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ABSTRACT
Malware evolves perpetually and relies on increasingly so-
phisticated attacks to supersede defense strategies. Data-
driven approaches to malware detection run the risk of be-
coming rapidly antiquated. Keeping pace with malware
requires models that are periodically enriched with fresh
knowledge, commonly known as retraining. In this work,
we propose the use of Venn-Abers predictors for assessing
the quality of binary classification tasks as a first step to-
wards identifying antiquated models. One of the key bene-
fits behind the use of Venn-Abers predictors is that they are
automatically well calibrated and offer probabilistic guid-
ance on the identification of nonstationary populations of
malware. Our framework is agnostic to the underlying clas-
sification algorithm and can then be used for building better
retraining strategies in the presence of concept drift. Results
obtained over a timeline-based evaluation with about 90K
samples show that our framework can identify when models
tend to become obsolete.

CCS Concepts
•Security and privacy → Intrusion/anomaly detec-
tion and malware mitigation; Mobile platform secu-
rity; •Computing methodologies → Machine learning;
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1. INTRODUCTION
Machine learning has become mainstream in identifica-

tion of malicious software [4, 21, 24]. When combined with
techniques that infer semantic properties of programs, ma-
chine learning techniques build models of program behavior
that can be used to identify malicious samples. Building
a sustainable classification model, however, is a challeng-
ing task. Firstly, the knowledge of the human analyst who
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builds the model based on patterns of malicious behavior
is usually incomplete. Secondly, malware behavior tends to
evolve over time becoming increasingly sophisticated which
renders historical models obsolete. The performance that a
classification model from the past is able to achieve on un-
seen samples, therefore, tends to degrade over time. This
phenomenon is commonly referred to as concept drift [31].

A common strategy for dealing with concept drift is to
retrain the model at periodic intervals. Periodic retraining
allows new features that might be characteristic of newer
samples to be included in the model. This is not a straight-
forward task and involves three distinct steps. The first step
is to identify if and when test samples are being poorly clas-
sified. In the second step, a human analyst needs to look
at these samples to identify characteristics which might be
of interest. Finally, when a critical mass of poorly classi-
fied samples have been investigated, the model can be re-
trained to enrich it for future classification decisions. In
this work, we deal with the first step in this process and
investigate techniques for assessing decisions made by clas-
sification models. In particular, we propose techniques to
identify when the classifier is being forced to make a deci-
sion based on ambiguous evidence. Thereby, our work can
be used to trigger step two in retraining where a human an-
alyst is involved to further investigate the test sample. It
must be clarified, though, that we do not offer any guidance
on when the model should be retrained. We believe this to
be a subjective decision that relies on the time and resources
available.

If the classification model is forced to make a decision
based on ambiguous evidence, the security with which clas-
sification decisions are made drops hand-in-hand with the
classification accuracy. Consequently, for algorithms that
compute a probability score along with providing a classifi-
cation decision, one may think it might be sufficient to look
at these scores to understand if the classifier is unsure of
the decisions it takes. However, there are two main draw-
backs of these scores. Firstly, algorithms that compute these
probabilities assume properties related to the distribution of
the probabilities which may not always be true. For exam-
ple, Platt scaling which is used to compute probabilities for
Support Vector Machines (SVM), assumes that the proba-
bilities would fit to a sigmoid function. This is not always
true and it has been shown in the past that Platt’s scaling
performs poorly with linearly inseparable data where the
distribution of probabilities is not sigmoidal [15]. Secondly,
techniques for computing probabilities for a decision are not



transferable across different classifiers. For example, Platt
scaling is a technique created specifically for SVM and does
not necessarily work well with other classifiers.

In this work, we show how recent advances in machine
learning techniques can enable decision assessment in a fast
and reliable manner whilst providing theoretical guarantees
on the assessment. We propose the use of Venn-Abers pre-
dictors which provide guarantees of perfect calibration when
used to assess classification decisions. For the case of mal-
ware detection, perfect calibration entails that if we have a
number of samples that are benign with a predicted proba-
bility of p, then the expected proportion of benign samples
among these is precisely p. This property is of paramount
importance when applying probabilities to decision-making
frameworks such as in §2. Perfect calibration is hard to
achieve with just a single probability score. For this pur-
pose, Venn-Abers provides multiple probability scores for
a classification decision. If the range of the scores is de-
noted as [p, q], then the closer p is to q, the more accurate
the probability score is. A wider range typically signifies
that the probability prediction is unreliable and the sample
is unusual with respect to the original training data. We
corroborate this point by presenting empirical evidence on
a causal relation between unsure (but potentially correct)
classification decisions made by the model and poor perfor-
mance during deployment. Apart from theoretically guaran-
teeing perfect calibration, an added advantage of using the
Venn-Abers predictor is that it is agnostic to the underlying
classification and can work well with a wide range of classi-
fication algorithms. This makes the Venn-Abers predictor a
highly versatile technique for decision assessment.

The main contributions of this paper are as follows:

• We discuss a framework to highlight how probabilistic
predictors can help minimize operational costs (§2).
We make a critical assessment of probabilistic predic-
tors where probabilities are used for decision assess-
ment processes (§3).

• We further show that Venn-Abers probability ranges
offer insight into the relative performance of a classi-
fication decision while being fully versatile and work-
ing with numerous underlying classification algorithms
(§4).

• Using a timeline-based evaluation, we show how the
Venn-Abers predictor can be used to indicate when
retraining might be necessary (§5).

2. PROBABILISTIC GUIDANCE IN OPER-
ATIONAL SETTINGS

In this section, we discuss the costs and benefits of using
human analysts and how assessment of classification deci-
sions made by the model can aid the process. Our work is
focused on malware detection where samples are classified
as being either malicious or benign. We show how a decision
assessment framework can efficiently integrate the expertise
of a malware analyst in the case of malware detection. For
the subsequent discussions, we assume that we have a classi-
fication model that emits probabilities of a test sample being
malicious or benign along with the predicted class.

Probabilities help in the creation of a decision making
framework where we can selectively engage the help of a

- AX I A×
Benign 0 a b

Malicious 0 c d

Table 1: Table of costs incurred when taking an action on a
sample that is either benign or malicious.

human analyst in the case of ambiguous decisions. Suppose
that we have a malware detection system along with a policy
of sending appropriate samples off to malware analysts for
further inspection. We would only like to send off samples
that are worth investigating because manual inspection can
be expensive. In this situation, there are two possible actions
that can be performed on each sample, i.e., to either accept
or investigate the decision of the classification model.

Accepting the decision of the classification can be further
split up into two categories: those decisions that are correct
with respect to the ground truth and those that are not.
For the rest of our discussions, we denote the Investigate
decisions as I and divide Accept (denoted by A) decisions
into two sub-categories: AX where the model’s decision is
correct and A× where the model’s decision is incorrect.

Suppose we are able to attach costs to each of these ac-
tions, probabilities can help us make optimal decisions based
on operational constraints. Consider as an example Table 1.
Here, each column corresponds to the three actions available
at the disposal of the malware analyst as enumerated above
and each row corresponds to the true class of a sample.

It can be noted that when the model says that a sam-
ple belongs to a benign class (first row) and the decision
is correct, the cost of accepting the decision (denoted by
action AX in the first column) is zero. Similarly, the cost
of accepting a correct decision where the sample is deemed
malicious is zero. For all other combinations of model de-
cisions and actions taken, there is a fixed cost associated.
These costs are subjective. For example, the values of a and
c where decisions are referred to the human analyst depend
on the size of the team and number of analysts available
to perform further investigation. It should also be noted
that there are costs involved in accepting a wrong decision.
For example, the column A× contains non-zero costs b and
d for accepting wrong decisions. Incorrect identification of
benign/malicious samples often carries a bigger operational
penalty than sending it to a human analyst. Therefore, the
values for b and d are typically (but not necessarily always)
bigger than a and c, respectively.

Malware detection teams would need to choose the con-
stants representing the operational costs according to their
goals. We now show how prediction probabilities combined
with operational costs can aid the process. If misclassifi-
cation is not acceptable, the parameters b and d should be
relatively large. However, if the team has few analysts, a
and c need to be relatively large. For an optimal decision,
the expected loss given each action should be considered. In
this case, given a probability prediction p of a sample being
benign, and the costs of accepting: (i) a benign decision (Ab)
and (ii) a malicious decision (Am), we have the following:

E(Cost|Am) = (1− p)d (1)

E(Cost|I) = pa+ (1− p)c (2)

E(Cost|Ab) = pb (3)



Figure 1: A plot of the expected loss associated with each
action against the probability prediction p. The solid black
line indicates the loss associated with the optimal action.
Parameters chosen: a = 1.5, b = 3, c = 4, d = 1.

Equations 1 through 3 show a linear relationship between
the expected operating costs for actions I and A(m,b) and the
probability p of a sample being benign. If these costs are
plotted against the probability of a sample being benign, the
optimal operational setting is where we minimize the cost for
each probability value. This is an important aspect of using
probabilistic guidance in an operational setting and is fur-
ther explained using the example from Figure 1. In Figure
1, we have plotted the cost functions against probabilities
after using constant values of a = 1.5, b = 3, d = 4, c = 1.
It may be seen that if we minimize the operational cost for
each probability value, it is now possible to identify the ex-
act points at which alternate actions should be considered.
For our example, we should investigate the decision of the
classifier when p ∈ [0.4, 0.67] and take action I. Otherwise,
we should accept the classifier decision and take action A.

3. DECISION ASSESSMENT TECHNIQUES
Ambiguity in decisions made by a classification model oc-

cur when the differentiating factors of individual classes are
ill-defined or missing from the classification model. In such
cases, the classifier is forced to pick a class for the test sam-
ple but alternate choices may also be possible and, at times,
almost as fitting as the chosen class. Techniques that derive
the probability of a sample belonging to a class or a sta-
tistical p-value for the hypothesis that the sample belongs
to a class can be used to see how well a sample fits into
individual classes. In this section, we give an overview of
the approaches available to assess when a classifier decision
is reliable. We also provide empirical evidence of probabil-
ity scores derived from conventional machine learning algo-
rithms not being reliable techniques for decision assessment.

For discussing various decision assessment techniques, it
is necessary to introduce the notation and terminology that
will be used. First of all, we denote individual feature vectors
of each sample with the symbol x. The set of all possible fea-
ture vectors is represented as X. Since we will only deal with
the binary classification problem, the labels for the samples
will be denoted as y ∈ {0, 1}. In this paper, we will always
be considering decision assessment techniques that build on
top of an underlying algorithm that outputs a score. A score
could be a probability measure of a sample belonging to a

particular class or distances from hyperplanes separating the
classes. This algorithm will always be trained and its output
score will be denoted by the function s : X → R where R
is the set of real numbers. Given an input feature vector x,
the trained algorithm’s output score is s(x). Feature vectors
will be interchangeably referred to as objects.

3.1 Assessment Using P-values
P-values have been used in the past to assess how well test

samples fit into classes seen during training [32]. Conformal
Prediction (CP), as detailed in [32], uses p-values to statis-
tically assess how well a sample fits into a family and uses
this information to identify, with a given confidence level,
the sets of classes a test sample might belong to. Whenever
a p-value for a test sample and class is calculated, a null
hypothesis that the sample belongs to the class is assumed
to be true. A large p-value indicates significant evidence in
favor of the null hypothesis and therefore, if a test sample
and class combination exhibit large p-values, it is likely that
the test sample belongs to the class.

For computing p-values, CP takes a non-conformity score
as input. This is a measure (e.g., geometric or probabilis-
tic) of how well a sample fits into a class. For example, in
the case of SVM, the non-conformity score could be derived
from the sample’s distance to the segregating hyperplane,
with samples closer to the hyperplane being less conform-
ing. Let’s assume that a real-valued function N gives the
non-conformity score for a test object z and a given class B.
The p-value for the null hypothesis that z belongs to B can
be derived by putting N (B, z) in context with other samples
from the same class, i.e., {N (B, z′) : z′ ∈ B, z′ 6= z}. Thus,
the p-value is computed to be the proportion of samples in
a class with identical, or higher, non-conformity scores.

We now describe how p-values can be used in identifying a
prediction set for a test object using techniques such as CP.
When the p-values for all classes of a sample are written
out in descending order, introducing a cut-off level ρ selects
a potential set of classes to which the sample may belong
to with a probability of at least ρ. All other classes hav-
ing p-values less than ρ are treated as rejected options for
classification. Recent attempts to statistically evaluate clas-
sification tasks [14], enabled to selectively invoke CP when
applied to Android malware to improve the overall classifica-
tion accuracy by including alternate high p-value choices [8].

Although decision assessment using p-values is insightful,
it is very expensive. For testing the null hypothesis on the
test sample, it needs to be placed in every possible class
and its p-value compared with the p-values of other samples
in the class. Whenever a p-value needs to be computed, a
standard classification algorithm needs to be run1. If there
are n samples in the training dataset and c possible classes,
we need to run a traditional classification algorithm (n× c)
times to obtain the non-conformity measures for all samples
for all classes, and this makes assessment using p-values ex-
pensive for large datasets. We now discuss probabilistic pre-
dictors, which output a probability of a test object belonging
to a particular class. Unlike p-value based assessment, the
advantage of probabilistic predictors is that they emit prob-
abilities of the test object belonging to a particular class for
all classes with just a single run of the underlying algorithm.

1Non-conformity scores, used to compute p-values, are de-
rived by a given classification algorithm.



3.2 Probabilistic Predictors
A probabilistic predictor is simply an algorithm that out-

puts a probability given a test object. This output will be
the probability of the true label of the input being y = 1.

Calibrated Probabilities. Let Y be a random variable tak-
ing values in {0, 1} and P be the random variable associated
with the output of a probabilistic predictor. A probabilistic
predictor is said to be well calibrated if the following holds
for all possible values of p:

E(Y |P = p) ≈ p.

Alternatively, this equation can be written as Pr(Y = 1|P =
p) ≈ p. The notion of perfect calibration is essentially the
same apart from the requirement that exact equality must
hold. In the case of perfect calibration, the probability of
a true label being 1 corresponding to the prediction P = p
is precisely p. Therefore perfect calibration is the ideal aim
for probabilistic predictors.

Platt Scaling. Suppose we have a binary classifier that out-
puts some score on each test object (denoted by function s)
in order to predict its true label. An example of a score could
be the distance to the separating hyper-plane of some SVM.
How do we translate these scores into well-calibrated prob-
ability predictions on the true label? A popular solution to
this problem is to apply Platt scaling [20]. This method was
initially intended to produce well calibrated probabilities for
the output of SVMs and works by fitting logistic regression
to the output scores of the trained model. In more detail, the
posterior probability of a label y given a score s′ is assumed
to take the form of a sigmoid function. This assumption is
written as:

Pr(y = 1|s′) =
1

1 + eAs′+B
.

The parameters A and B are calculated using a maximum
likelihood principle. This calculation follows in the tradi-
tional way for the most part, but Platt suggests a regular-
ization technique to avoid overfitting. Suppose we have a
training set {(x1, y1), ..., (xn, yn)} and have calculated the
scores si = s(xi). Let N+ and N− be the number of train-
ing objects with the labels y = 1 and y = 0 respectively.
Then the relabeling for y = 1 is t+ = (N+ + 1)/(N+ + 2)
and for y = 0, the label t− = 1/(N− + 2) is used. The la-
bels t+ and t− should be interpreted as target probabilities.
Having defined the new labels ti, the minimization problem
used to find the parameters A and B is

min
A,B
−

∑
i

ti log(pi) + (1− ti) log(1− pi)

where pi = Pr(y = 1|si) as given by the sigmoid function. It
turns out that Platt scaling isn’t always the best choice when
it comes to extracting well calibrated probabilities for arbi-
trary score outputting algorithms. For example, it has been
shown that Platt scaling performs relatively poorly com-
pared to alternatives in some settings [35, 15]. Another well
known method is isotonic regression.

Isotonic Regression. Isotonic regression works by fitting
an isotonic (i.e. non-decreasing) function to a set of data
points. It does so by minimizing a weighted least squares
function. First of all, let’s assume that we have already

trained a binary classifier and obtained the resulting scoring
function s : X → R. In our context of binary classification,
let’s say that we are given a dataset {(x1, y1), . . . , (xk, yk)}
where the xi ∈ X are feature vectors and the yi ∈ {0, 1}
are true binary labels. We can then feed the feature vectors
into the scoring algorithm to get a set of scores {s1, . . . , sk}
where si = s(xi). Following this, we can reorder and remove
duplicates to get the set of distinct scores {s′1, ..., s′k′} where
s′i < s′i+1. The isotonic regression of the scores is the set
of numbers {f1, . . . , fk′} subject to the constraint fi < fi+1

that minimize the least squares function

k′∑
i=1

∑
j:sj=s′i

(yj − fi)2. (4)

Intuitively, one can think of the numbers f1, . . . , fk′ as val-
ues of a function f at the individual points s′1, . . . , s

′
k′ . In

order to extend the domain of f , we create a step function
by extending the points to the left. In other words, the step
function is defined as f(s) = fi for s ∈ (si−1, si]. Isotonic
regression can be used to produce well calibrated probabil-
ity predictions [19, 35, 17] but there is a somewhat natural
extension that we will focus on that is discussed in §4.

Empirical Comparison. In order to show the key charac-
teristics of Platt scaling and isotonic regression, we present
some empirical results in a manner similar to the literature
in this area [19]. Figure 2 shows a plot with four distinct
curves. The data points for these curves have been obtained
after running the Random Forests algorithm in the Android
malware detection domain. We use the Scikit-learn library
whose RandomForestClassifier also gives probability scores
for a decision through the predict_proba function. The de-
tails of the datasets that we use for training and testing can
be found in §5.2. For training, we used the datasets McAfee
goodware and Drebin malware sets and for testing we used
the Marvin goodware and malware sets. Although not nec-
essary at this point, the full details of the features used for
this experiment can be found in §5.1. The output scores
from the underlying algorithm (i.e. Random Forests), Platt
scaling and isotonic regression are shown on the x-axis in
Figure 2. The proportion of benign test objects in a set of
samples are shown on the y-axis. Alternatively, this axis can
be interpreted as an empirical estimate of the probability of
a sample being benign for a given score. With this in mind,
we now discuss the four lines shown in Figure 2.

1. Perfect Calibration: This is the ideal aim in proba-
bilistic prediction that we can aspire to achieve. If the
underlying algorithm has perfection calibration, then
the proportion of benign samples among the objects
with score s′ should be s′.

2. Random Forests: After obtaining the scores from
the underlying algorithm (Random Forests), we di-
vided them into buckets of width 0.05 and calculated
the proportion of benign samples in each bucket. For
example, if the predict_proba function tell us that
there are five samples with scores between [0.10, 0.15]
and three of them are benign, we have a green cross at
(0.125, 0.60). Note that the x-value is the midpoint of
the range [0.10, 0.15]. It may be seen that the prob-
ability scores computed by the underlying algorithm
case is far from ideal as the curve formed by the green



Figure 2: A comparison of the Random Forests, isotonic
regression and Platt scaling probability scores against the
observed benign proportions corresponding to each score.
The Random Forest scores were placed into bins of width
0.05 and plotted against the benign proportion observed in
each bin.

crosses is far from the y = x line which represents
perfect calibration.

3. Platt Scaling: In order to understand whether Platt
scaling is able to fit the predicted scores from the un-
derlying classifier, we fit the sigmoidal function as out-
lined in §3.2. The red line plotted shows the result-
ing probability prediction against the appropriate ob-
served proportions of benign samples. Although Platt
scaling offers an improvement over the underlying algo-
rithm, the resulting predictions are still quite far away
from being perfectly calibrated.

4. Isotonic Regression: Finally, we performed isotonic
regression on the scores predicted by the underlying
algorithm. The blue line plotted shows the relation
between the probabilities output by isotonic regres-
sion against the corresponding observed probabilities
(i.e. proportion of benign samples associated with each
score). It is clear that the isotonic regression line pro-
duces relatively well calibrated results compared to the
other methods since it agrees much more closely with
the line for perfect calibration.

To summarize, we hope to emphasize two main points
from Figure 2. The first is that there is a need for calibra-
tion methods such as isotonic regression and Platt scaling.
This is clear from the fact that the output probabilities of
Random Forests are poorly calibrated as seen in Figure 2.
The next point is that Platt scaling is not always the best
choice for calibrating probabilities and that isotonic regres-
sion can often produce better results.

4. INDUCTIVE VENN ABERS PREDICTORS
In this section we introduce the use of Venn-Abers pre-

dictors for measuring the confidence of a classification deci-
sion. For this, we first introduce the notion of loss functions,
and then provide a formal representation of Inductive Venn-
Abers predictors (IVAP). Finally, we discuss applying IVAP
probabilities to assess loss in performance.

4.1 Loss Functions
A standard assessment method for probabilistic predictors

is the use of loss functions. Two popular choices of loss func-
tion are log loss and Brier loss. The log loss of a probability
prediction p whose true label is y is given by the expression

−y log p− (1− y) log(1− p) (5)

where the log uses a base of 2. It is clear that a low prob-
ability p is punished with a high loss when the true label
is 1 and a high probability is punished heavily when the
true label is 0. This loss function also punishes undesirable
probabilities near 0.5. Given a sizeable test set, the aver-
age loss incurred can be used to compare the performance
of different probabilistic predictors.

4.2 Formal Description
Inductive Venn-Abers predictors build on the use of iso-

tonic regression to produce perfectly calibrated results. How-
ever, perfect calibration comes at the cost of multi-probability
output. In particular, IVAP returns the pair (p0, p1) where
p0 and p1 are two different predictions of the probability
that the true label of a test object is 1. A more precise
account of IVAP’s theoretical guarantee of perfect calibra-
tion is that just one out of p0 and p1 is perfectly calibrated.
Sadly, there is no practical way of deciding which of the two
it is. Despite this slight disadvantage, a single probability
can still be extracted by minimizing the maximum expected
value of some loss function (e.g. log loss or Brier loss). Us-
ing this minimax strategy, the single probability obtained is
expected to be well calibrated if p0 and p1 are close in value.

Suppose we are given a full training set {z1, z2, . . . , zn}
where zi = (xi, yi). Here, xi ∈ X represents an object and
yi ∈ {0, 1} a label. Let x without a subscript represent a
test object for which we want to predict the probability that
its label is 1. The method of IVAP proceeds as follows:

• Split the training data into two sets: the calibration set
{z1, . . . , zk} and the proper training set {zk+1, . . . , zn}.

• Now train the scoring classifier on the proper training
set to get a scoring function s : X → R.

• For i = 0, 1: let g(i) : R→ [0, 1] be the isotonic regres-
sion on the points
(s(x1), y1), . . . , (s(xk), yk), (s(x), i).

• Output (p0, p1) = (g(0)(s(x)), g(1)(s(x))).

It has been shown that after the scoring algorithm has
been trained and the scores computed, IVAP can be imple-
mented in O(k log k) steps [34] where k is the number of
objects in the calibration set. Therefore, the computational
cost of IVAP will often be determined by the efficiency of
training the underlying scoring algorithm and calculating
the scores on the calibration set.

4.3 Using the Probabilities
Our contribution utilizes the multi-probability output of

IVAP in two different ways. In particular, we propose two
different metrics for detecting a loss in accuracy of an un-
derlying algorithm:

• APW: The Average Probability Width (APW) between
the two different IVAP predictions |p0−p1| over a test
set.



• MAD: The Mean Absolute Deviation (MAD) from 0.5
i.e. average |p−0.5| over the test set where p = p1/(1−
p0 + p1).

The first metric (APW) considers the quantity |p0 − p1|
which can be interpreted as a measure of the uncertainty
of a probability prediction. The intuition behind using this
metric is that a large uncertainty corresponds to an unusual
test sample that IVAP and the underlying algorithm strug-
gle to process confidently. Therefore, we expect an increase
in APW to indicate a loss in accuracy of the underlying classi-
fier. The second metric (MAD) utilizes the absolute deviation
of a single probability prediction p from 0.5. The formula
for p given above corresponds to the minimax solution to
the log loss function [33]. The idea behind MAD is that as
accuracy of the underlying algorithm decreases, we would
expect probabilities to move towards 0.5. As a result, we
would expect a loss in accuracy of the underlying classifier
to correspond to a reduction in MAD.

An empirical investigation of our ideas is given in §5.3. It
should be noted that while we are aware that the theoreti-
cal guarantee of perfect calibration may be violated given a
heavily drifting data population, our empirical findings show
that these metrics can still provide insight into coping with
the issue of concept drift.

5. EXPERIMENTS
Our experimental evaluation is mainly tailored to Android

malware classification due to its rapid proliferation over the
last years [29]. However Venn-Abers predictors can also be
used in the desktop arena. In this section, we first describe
the baseline detector and the datasets used in our work.
Next, we experimentally confirm that Venn-Abers can be
used to assess concept drift, and we evaluate the perfor-
mance and complexity of our framework. Finally, we discuss
the retraining strategies derived from our results.

5.1 Baseline Detector
To evaluate how well our probabilistic predictor performs

we rely on DroidSieve [28], an Android malware classifier.
DroidSieve uses static analysis to derive a number of features
known to be characteristic of Android malware. These fea-
tures are then used to fit a model capable of accurately dis-
criminating goodware from malware. DroidSieve identifies
two major classes of features: syntactic ones, which are de-
rived from the code and metadata of the app; and resource-
centric ones, which are obtained from resources used by the
app. For the former, instances of the type of features ex-
tracted are API calls, or permissions used by the app. As
for the latter, DroidSieve performs deep inspection of some
resources such as certificates, or embedded native ELF exe-
cutables to extract another set of features. Overall, we use
both binary and continuous features. The presence or ab-
sence of a particular trait, such as a permission, is encoded as
a binary feature; numeric properties, such as string lengths
or op code frequency, are encoded as continuous features.

DroidSieve uses feature selection to restrict the classifier
to important discriminating features. A feature is selected
when the importance score assigned by the classifier is higher
than the mean of all the features’ scores. DroidSieve’s archi-
tecture supports a variety of learning algorithms. For our
experiments, we considered Extra Trees, Random Forests,
and eXtreme Gradient Boost (XGBoost), and Support Vec-

tor Machines (SVM). While SVM is based on separation
using hyperplanes and is less sensitive to outliers, the other
classifiers are based on ensemble tree. The advantages of
ensemble classifiers are that they can be parallelized giv-
ing significant speed-ups when dealing with large datasets.
Additionally, ensemble tree-based classifiers usually obtain
better predictive performance than a single classifier because
they make the decision boundary smoother.

As for the choice of the baseline detector, we use Droid-
Sieve because it performs consistently well when dealing
with obfuscated malware [28]. However, it is worth noting
that our framework is agnostic to the underlying baseline
detector; at this point, we emphasize that the goal of this
paper is to evaluate the presence of concept drift.

5.2 Datasets
The evaluation is based on a number of datasets contain-

ing both real-world malware samples and a set of goodware
apps. For the malware, we rely on two well known datasets
called MalGenome [36] and Drebin [5] containing a total
of 5.5K unique samples. We further extended this with an
additional set of 24.3K malwares given by Marvin [16] and
McAfee. Similarly, we obtained about 107K goodwares also
from Marvin and McAfee. The summary of the datasets
used in our evaluation is described in Table 2a.

We split our datasets into three different modes: training,
calibration and testing. For training and calibration, we re-
tained 18.67% and 9.34% of the samples respectively; while
for testing we retained the remaining 71.99% of the samples.
For training and calibration we use Drebin, MalGenome and
Marvin malware, whereas for testing we included the entire
set of malware given by McAfee. On the one hand, the
Drebin, MalGenome and Marvin malware sets are mainly
samples found and vetted by security researchers and ex-
perts prior to 2013. On the other hand, the McAfee malware
dataset are samples found by this Anti-Virus (AV) vendor
between the first quarter of 2012 and the first quarter of
2016. Table 2b shows a summary of the dataset combina-
tions and describes the number of samples in each mode.

The rationale behind this splitting is to keep some histor-
ical coherence in the selection of training and test datasets
as this has a great impact on the performance of the detec-
tor [3]. We further aimed at obtaining a clean snapshot of
the perception of an AV vendor that would go live in late
2011 and would span its activities up until 2016. The date
span provides a good standpoint to evaluate the concept
drift suffered by an AV vendor over four years.

Both the training and calibration modes contain the same
ratio of malware to goodware, i.e.: one goodware per mal-
ware (1 : 1). Although the occurrence of malware in official
markets is lower than the presence of goodware, undersam-
pling the training set is a common practice to equally weigh
both classes when building the classifier [22, 7]. For good-
ware, we use a similar splitting as malware except that we
included in the testing set the remainder of the benign sam-
ples from Marvin after building the testing and calibration
sets. This enabled us to test our model with higher ratio of
1 : 5 which is similar to other works in the area [37, 1, 6].

5.3 Experimental Results
In this section, we discuss a set of experiments to con-

firm that Venn-Abers can be used to assess concept drift in
malware detection. In particular, we evaluate the quality of



ID Dataset Name Type Samples
— Drebin [5] Malware 5,551
MgMW MalGenome [36] Malware 1,260
McGW McAfee Goodware 8,040
McMW McAfee Malware 13,777
MvGW Marvin [16] Goodware 84,980
MvMW Marvin [16] Malware 10,582

Summary
Malware 31,170
Goodware 93,020

(a) Dataset sources

Mode Type Datasets Ratio Samples

Training
Malware {Drebin, MgMW, MvMW}

1 : 1 23,191
Goodware {MvGW}

Calibration
Malware {Drebin, MgMW, MvMW}

1 : 1 11,595
Goodware {MvGW}

Testing
Malware {McMW}

1 : 5 89,404
Goodware {MvGW, McGW}

Hold-out Ratio: 18.67% Training – 9.34% Calibration – 71.99% Testing

(b) Dataset split

Table 2: Overview of chosen datasets. Figure 2a shows the source of our datasets together with the number of samples from
each source, and Figure 2b shows the dataset splits and the ratio between malware and goodware used. The holdout ratio
shows the overall percentage of samples retained for training, calibrating and testing.

Classifier Name APW MAD

XGBoost −0.872 0.877
Extra Trees −0.919 0.900

SVM −0.909 0.922

Table 3: The Spearman’s rank correlation coefficients of APW
and MAD for each of the plots shown in Figures 3-4.

a given underlying classification algorithm by utilizing the
multi-probability output of IVAP (see §4). To this end, we
report our results using two different metrics over the test
set: APW and MAD (see §4.3).

Overview. For our experiments, we train and calibrate our
classifiers with the datasets described above. Then, we use
the testing set to compute both APW and MAD for the samples
observed in each quarter of a year from 2012 up to May 2016
(Q1). Note that we rely on McAfee’s first seen (i.e., first
detected) date to build the historical time-line of the mal-
ware. The average number of malware samples per quarter
is about 800 (see Appendix A for details on the distribution
of samples). Figure 3 shows the relation between the aver-
age recall and the APW for each quarter. Similarly, Figure
4 shows the average recall against the MAD. For the sake of
clarity, we depicted the best fit (either linear or quadratic)
to highlight how our metrics progress with respect to the
recall. For the case of APW, we can observe that the average
|p0 − p1| decays as the recall improves. On the contrary, for
MAD we can see that |p−0.5| increases as the recall improves.

To further reinforce the relationships shown in the plots,
Spearman’s rank correlation coefficients have been calcu-
lated. To briefly recap, Spearman’s rank lies between the
values +1 and −1. On the one hand, values near +1 in-
dicate a strong increasing relationship between our metric
and the recall. Note that the relationship is not necessarily
linear. On the other hand, values near −1 indicate a strong
decreasing relationship. The Spearman’s rank correlation
coefficients for each of the plots are included in Table 3.

It is worth mentioning that the temporal order of the plot-
ted points is expected to start from the rightmost side of
the graph (i.e., with high recall) to the leftmost one (i.e.,
with lower recall) following a temporal order throughout the
quarters. However, we found that the average recall did not
strictly decrease with each quarter. This could be attributed
to the way malware families evolve. Malware campaigns do

not usually follow a continuous timeline and specimens that
appear at a given time could disappear and then come back
to the markets with new updates a few months later. Hav-
ing said this, the lowest 4 values of recall do correspond to
the last two quarters considered. Additionally, the 3 points
with the highest recall correspond to the first three quarters
in the case of XGBoost. This means that overall there is a
decreasing trend in recall over time.

In total, we tested our metrics against samples from 17
quarters, showing a wide range of recall results with at least
0.1 points of difference. In the best case scenario, our recall
lies near 100% accuracy over the unseen testing samples.
The lower bound found in the worst case is about 76% recall.
Altogether, this provides a baseline set of drifting models to
study the role of APW and MAD metrics which is discussed
next in detail for each of the baseline classifiers used.

XGBoost. For the case of XGBoost we can observe that
both APW and MAD closely predict the decreasing performance
trend as shown in Figure 3a and Figure 4a. In particular,
APW reports a quadratic decreasing trend between the aver-
age |p0 − p1| score and the recall. This fits extremely well
with our hypothesis that the uncertainty in our probabil-
ity predictions increases as our accuracy decreases. On the
other hand, MAD shows a similarly strong—but increasing—
relationship between |p− 0.5| and the recall. In both cases,
the trend can be modeled quadratically and, interestingly,
there appears to be an element of symmetry between the
two models.

It is important to emphasize at this point that both APW

and MAD can be calculated in the absence of true labels or
ground truths. Therefore, these quantities can be used to
estimate a loss in accuracy when feeding our underlying al-
gorithm with unseen and unclassified samples.

Extra Trees. When assessing the performance reported by
the Extra Trees classifier, we found that only one quarter
was predicted poorly as depicted in Figures 3b and 4b. In-
terestingly, this point corresponds to the 1st quarter of 2016.
When considering this quarter as an outlier, we can observe
a similar trend to the one reported for XGBoost albeit with
different values. In the particular case of the MAD, the points
seem slightly more scattered from the prediction line indi-
cating a looser trend. Having said this, the Spearman’s rank
correlation coefficients are similar to those observed for XG-
Boost indicating a monotonic trend for both metrics.



(a) XGBoost

(b) Extra Trees

(c) SVM

Figure 3: Average probability width |p0 − p1| (i.e., APW)
against average recall for the three underlying algorithms.
Each data point refers to a quarter in 2012–2016.

(a) XGBoost

(b) Extra Trees

(c) SVM

Figure 4: Average deviation |p − 0.5| (i.e. MAD) against av-
erage recall for the three underlying algorithms. Each data
point refers to a quarter in 2012–2016.



Scores IVAP
Algorithm Train Test Train Test
XGBoost 17 0.41 0.42 0.41
Extra Trees 56 0.71 0.71 0.71
SVM 500 79 79 80

Table 4: Running times (in milliseconds per sample) of
each underlying algorithm together with the assessment time
taken by our IVAP-based framework.

SVM. For the case of SVM, we can observe from the results
that the number of outliers is slightly higher (see Figures 3c
and 4c). We can observe that the range of probability is
smaller than those observed in the other classification algo-
rithms and there is a wider range of recalls present. In this
case, we found that linear regression provided a more appro-
priate fit to the plotted data in comparison to a quadratic
curve. Apart from that, the results are somewhat similar to
the case of Extra Trees. More specifically, there is one quar-
ter (quarter 1 of 2016) that breaks the trend with a recall
of about 0.90. This confirms that this data point is more
difficult to model and suggests that further analysis could
lead to strong alternatives to APW and MAD. Spearman’s rank
correlation coefficients for this algorithm are still good at
−0.909 for APW and 0.922 for MAD, showing that there is evi-
dence of a monotonic relationship present in the data.

5.4 Performance and Complexity
We now give an account of the computational cost asso-

ciated with our approach. Suppose we have a calibration
set of size k. It has been shown that the theoretical com-
plexity of the training phase of IVAP is O(k log k) and that
the probability calculation for each sample can be done in
O(log k) steps [34]. In order to see how this translates into
practice, computation times were collected during our ex-
periments. Experiments were run on a system with an Intel
Core i5 processor and 8GB RAM.

In all cases, the computation time associated to IVAP was
significantly shorter than the time taken to train the under-
lying algorithm. Table 4 shows a summary of the results.
The second column in the table corresponds to training on
23,191 samples and testing on 4,502 test samples. whereas
the third column corresponds to training IVAP on a cali-
bration set of size 11,595 and outputting 4,502 probability
predictions on the test set.

On the one hand, the time taken to train the underlying
algorithm is about 392 seconds in total (1.7 · 10−2 seconds
per sample) for XGBoost, and 1298 seconds (5.6 · 10−2 sec-
onds per sample) for Extra Trees. On a different order of
magnitude, SVM takes about 11496 seconds (5.0 · 10−1 sec-
onds per sample). Contrary, the time taken to process the
test samples is negligible for the tree classifiers at a total of
2 seconds for XGBoost and 3 seconds for Extra Trees, but
significantly longer at a total of 354 seconds (7.9 · 10−2 per
sample) for SVM.

On the other hand, results show that training IVAP takes
just 5 seconds in total (4.2 · 10−4 seconds per sample) for
XGBoost, 8 seconds (7.1 · 10−4 seconds per sample) for Ex-
tra Trees, and 915 seconds (7.9 · 10−2 seconds per sample)
for SVM. IVAP also outputs probabilities on test samples
efficiently taking a total of 2 seconds (4.1 · 10−4 seconds per
sample) for XGBoost and 3 seconds (7.1 · 10−4 per sample)
for Extra Trees. The total time taken to calculate the prob-

abilities over the test set for SVM was longer at 360 seconds
(8.0 · 10−2 seconds per sample).

In general, computing multi-probability predictions for
SVM is significantly more expensive than the other underly-
ing classifiers. However, this difference is due to the compu-
tational cost of calculating the scores associated with SVM
and should not be attributed to the deployment of IVAP.

5.5 Retraining Strategies
Suppose we have decided on an unacceptable recall thresh-

old R∗. One way of deciding when to retrain is to find the
corresponding APW and MAD thresholds based on the model
obtained during the calibration of our IVAP-base frame-
work, i.e., use either the linear or the quadratic fit that
shapes the regression. Note that this type of threshold can
be violated by recalls that are higher than R∗ and can eas-
ily be respected for recalls that are lower than the given
threshold. Therefore, this strategy can only offer a rough
guideline. In a setting where the analyst is willing to ig-
nore the seemingly anomalous result (2016Q1), the model
built can better fit the remaining points and the retraining
strategy would appear to be more effective.

Nevertheless, some values of R∗ have better cut-off thresh-
olds depending on the metric used for the assessment (i.e.,
APW or MAD). For example, if we chose to use XGBoost with
R∗ = 0.93 a natural threshold for APW would be around
0.006, whereas the MAD threshold would be 0.465. Having
access to different metrics enables us to customize our ap-
proach further. In scenarios where the retraining burden is
high or a lower recall is not detrimental, we can decide to re-
train only when both thresholds are breached. This strategy
can lead to less retraining tasks at the expense more concept
drift. On the contrary, if retraining is inexpensive we can
decide to retrain based on the most conservative metric to
minimize performance degradation.

6. RELATED WORK
Several approaches for automatically detecting malware

have been presented in the literature, which typically use
static and/or dynamic analysis to extract features from the
programs under analysis. Once these features are extracted,
many techniques can assist the analyst in detecting the mal-
ware, including machine learning [13], data mining [30], ex-
pert systems [23], and clustering [9]. In the past, SVM and
Random Forest have been successfully applied to malware
detection [27] and they have been shown to have better per-
formance than others after comparing them to 180 classi-
fiers on various datasets [10]. Ensemble tree-based classi-
fiers perform well on many real world settings, however. For
example, Extra Trees [11] and Gradient Tree Boosting [12]
have been achieving great performance in most of recent
“Kaggle” competitions [2]. Most of these techniques were
first introduced for malware on desktop systems and then
were adopted for mobile malware as smartphones become
the platform of choice for malware developers [29].

In the Android realm, machine learning has been widely
used for malware detection [5, 16]. Drebin [5] is a lightweight
detection method that uses static analysis to gather the most
important characteristics of Android applications such as
permissions, API calls, and network addresses declared in
clear text. It uses Support Vector Machines (SVM) to de-
tect whether a given sample is malicious or benign. Mar-
vin [16] shows how the combination of static and dynamic



analysis can improve the detection rate as well as reduce
the number of false positives. It uses a number of stati-
cally extracted features and combines them with additional
dynamically extracted features, overall more than 490,000.
Moreover, it leverages machine learning to detect malware
as well as providing a risk score associated with a given un-
known sample. Madam [25] proposed a host-based malware
detection system analyzing features at four levels: kernel,
application, user and package. It derived features such as
system calls, sensitive API calls and SMS through dynamic
analysis while complementing these with statically derived
features such as permissions, the app’s metadata and mar-
ket information. More recently, DroidScribe [8] uses SVM
with selective invocation of Conformal Prediction [32] by
statistically evaluating SVM classifications [14] to generate
prediction sets for malware family identification.

The main weakness of machine learning-based approaches
is that resulting classification models often change over time
becoming less accurate as malware evolves. Therefore, a re-
training strategy that would adapt to drifting scenarios such
as the one present in Android malware detection is neces-
sary [3]. However, despite the rapid proliferation of malware
in Android [29], none of the recent works has looked into the
retraining conundrum. Authors in [18] suggested an online
learning architecture to deal with this problem but it still re-
mains unclear how concept drift can be predicted in practice.
In other domains, related works [26] leverage on studying
of the concept drift in a broad and general manner. For
instance, Singh et al. [26] propose two different measures to
track concept drift in malware family identification based
on the similarity of feature vectors from different time peri-
ods. One major limitation of Singh’s work is that adapting
and adopting similarity-based measures to the malware de-
tection problem might not work for large datasets. Further-
more, our work goes one step further by using probabilistic
guidance to predict nonstationary populations.

7. FUTURE DIRECTIONS
We have empirically explored the use of a special class of

probabilistic predictor. We envisage this work to develop
into a mature framework for both decision assessment and
as a paradigm for automatic retraining. In order to do this,
we intend to build on this initial work to move to evaluating
our work in an operational setting which will require an ex-
tensive evaluation of four verticals: versatility, alternatives,
metrics and assessment epochs. These are discussed below.

Versatility. A major drawback of Venn-Abers predictor is
that it is currently applicable only to the 2-class problem
which inhibits its use in a wide variety of domains. For ex-
ample, a key necessity in this domain is identifying the fam-
ily of a malware. Family identification is central to threat
mitigation strategies for malware containment. This multi-
class problem renders Venn-Abers predictor unusable in its
current form. Our immediate focus would be to extend
IVAPs to the identification of families, and other linkage
associations. Similar to conventional approaches to multi-
class classification, extending this work from a 2-class IVAP
to an n-class IVAP could be achieved by using a a one vs
one or one vs all approach. As an extension to this work,
we intend to study the theoretical and practical feasibility
of using IVAP for the multi-class case. This would greatly
enhance the practical impact of our research.

Alternatives. In order to project IVAP as a practical so-
lution for decision assessment and retraining indicator, we
intend to perform a thorough evaluation with other deci-
sion assessment algorithms. For example, other probabilistic
predictors related to IVAP have been shown to perform ex-
tremely well according to loss assessment [34]. In particular,
cross Venn-Abers are a combination of K IVAPs that can
potentially provide better assessments of nonstationary pop-
ulations of malware that introduce concept drift. Although,
these types of predictors are computationally inefficient, we
believe that there might be situations where the overhead
introduced might be tolerable; especially if it leads to better
assessments. The more standard predictors (§3.2) should
also be considered in future work. Additionally, we also in-
tend to evaluate the usefulness of other metrics non-related
to IVAP, such as Conformal Evaluator [14]. Such metrics
provide explanatory evidence on whether a sample belongs
to a class. When combined with a first-cut evaluation by
IVAPs, such techniques can provide a complementary means
of assessment to precisely identify concept drift, assist a hu-
man analyst and model retraining.

Metrics. In this work, we have suggested two different met-
rics for predicting losses in accuracy. Although the results
are shown to be promising, additional efforts could be trans-
lated into new retraining strategies. For instance, we are
currently computing our metrics based on the entire testing
set. Whether a subset of these samples could improve the as-
sessment is currently unknown and we intend to investigate
this. The selection of this subset could be guided by a search
heuristic. For example, it is likely that selecting the samples
for which the output probability is the least conclusive could
provide a different notion for detecting concept drift. This
can ultimately result in a better retraining strategy.

Assessment Epochs. We intend to further extend the data-
set in order to try different time-lines with varying levels of
granularity. This poses a significant challenge as there are
no large repositories of history goodware publicly available
for which the ground truth is guaranteed. Unfortunately,
retrieving goodware from Google Play is insufficient for our
work as we have restricted access to earlier versions of a sam-
ple which would make the time-line of samples incoherent.

8. CONCLUSION
We have demonstrated that IVAPs can be used for as-

sessing the quality of malware detection algorithms in the
presence of concept drift. We showed that well calibrated
probabilities can be used to detect potential loss in detection
accuracy. We also proposed novel metrics to identify obso-
lete models and evaluated the metrics using a large-scale
operational setting and presented a framework that can be
used to establish an adequate retraining strategy to mini-
mize performance degradation in real-world scenarios.

We further discussed how probabilistic predictors can help
to minimize operational costs, and we made a critical assess-
ment of probabilistic predictors for decision assessment. We
studied the performance and complexity of our framework
and showed that our methods are practical and efficient. Fi-
nally, we have presented a number of future directions that
can contribute to and foster research in the area.
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APPENDIX
A. DISTRIBUTION OF MALWARE

We rely on McAfee’s first seen date to build the historical
time-line of the malware. The distribution of samples per
quarter ranges from 23 to 5,182 samples as shown in Fig-
ure 5. The average number of malware samples per quar-
ter is about 800. In general, the number of samples seen
every quarter changes following a natural variation as new
specimens are added to the knowledge base of the Antivirus
Vendor. Note that in mid 2012 smartphones became the
platform of choice for malware developers [29] and the num-
ber of samples increases notably in the subsequent quarters.

Figure 5: Distribution of malware samples per quarter from
2012 to 2016. The bars are plotted in logarithmic scale to
highlight the variation of samples across quarters.
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