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Abstract. Code reuse attacks are advanced exploitation techniques that
constitute a serious threat for modern systems. They profit from a con-
trol flow hijacking vulnerability to maliciously execute one or more pieces
of code from the targeted application. ASLR and Control Flow Integrity
are two mechanisms commonly used to deter automated attacks based
on code reuse. Unfortunately, none of these solutions are suitable for
modified Harvard architectures such as AVR microcontrollers. In this
work, we present a code reuse attack against embedded AVR devices
that shows how an adversary can execute arbitrary code reused from the
firmware and other external libraries. We then propose a software-based
defense based on fine-grained random permutations of the code mem-
ory. Our solution is installed in the bootloader section of the embedded
device and thus executes during every device reset. We also propose a
self-obfuscation technique to hinder code-reuse attacks against the boot-
loader.
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1 Introduction

The widespread adoption of communicating technologies such as smart or wear-
able devices enables users to interconnect their systems world-widely. The so-
called Internet of Things (IoT) represents the integration of several computing
and communications paradigms that facilitate the interaction between these de-
vices. In this context, security and privacy plays an important role as many
of these devices incorporate sensors that could leak highly sensitive information
(e.g., location, behavioral patterns, and audio and video of the device’ surround-
ings). Moreover, embedded devices are frequently connected to the Internet, so
they are valuable targets for malicious activities, such as botnets or spammers.
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One common architecture for embedded devices is AVR3, which is a modified
Harvard architecture that physically separates the flash memory from the SRAM
memory. While the former contains the executable binary, the latter stores the
program data, heap, and stack. Flash memory can only be re-programmed from a
special section called bootloader, and applications cannot be modified at runtime
without flashing the entire memory. In addition, the number of times a memory
can be flashed (namely cycles) is limited.

Memory corruption vulnerabilities have been widely explored as a strategy
to hijack the execution control flow for a huge variety of systems, including em-
bedded and mobile devices [6, 12, 15]. In the past, once the adversary gained
control of the execution, the immediate next step was to directly jump into
its own malicious payload, which was already injected in the exploit [8]. How-
ever, Data Execution Prevention (DEP) techniques turns code injection useless.
AVR—together with other Harvard architectures—incorporate a type of hard-
ware based DEP defense. This avoids the flash memory (where the executable
code resides) being written from anywhere else except from the bootloader sec-
tion, which also resides in the flash memory. Thus, the only means to exploit
AVR devices is by reusing existing software from the flash memory [12, 15].

Related work. Code reuse attacks were first implemented by reusing different
functions imported from various libraries (such as libc [27]). Well-known coun-
termeasures such as Address Space Layout Randomization (ASLR) [5] modify
the memory layout of the function libraries during the loading process to effec-
tively hinder these return-to-lib attacks. However, modern code reuse attacks can
arbitrarily perform certain operations to carefully chain different pieces of code
(called gadgets) based on the Return Oriented Programming (ROP) paradigm
[17, 20]. In fact, code reuse attack are still feasible in ASLR-based defenses us-
ing ROP due to memory leakage vulnerabilities [24]. For example, the JIT-ROP
attack in [23] disassembles pages obtained from the leaked address to build a
gadget chain at runtime. The exploitation of memory leakages assumes that the
adversary can use large payloads, and that she can exploit the vulnerability sev-
eral times. However, these assumptions are not generally valid for AVR devices,
and the threat model is different from other non-constrained architectures such
as ARM or x86.

Countermeasures against code reuse attacks have been widely explored re-
cently [4, 6, 7, 9, 10, 12, 15, 18, 22]. Current defenses can be classified as follows:

1. Memory randomization [4, 6, 9, 25] obfuscates the layout of the program bi-
nary. To overcome memory leakages, this defense technique relies on certain
Execute-only-Memory (XoM) areas, which can neither be read nor written.
These areas can be used to store trampolines to real, randomized areas of
code. Many of these solutions rely on hardware-specific properties, such as
Intel Extended Tables [9, 25], which obviously are not applicable to AVR. A
recent work by Braden et al. [6] performs a software-based XoM for ARM
embedded devices. However, the authors also rely on a specific hardware

3 http://www.atmel.com/products/microcontrollers/avr/
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component, namely the link register used in ARM, to prevent address dis-
closure.

2. Control Flow Integrity (CFI), which typically determines which are the valid
targets for each control flow statement (e.g., jumps or returns), and prevents
non-valid flows. CFI usually incurs a expensive overhead [18], which is not
suitable for resource-constrained systems such as AVR.

Most of the attacks and defenses so far target either x86 or ARM architectures.
In these cases, the adversarial model and the defense capabilities are radically
different from those applicable to AVR. Current approaches aiming at hinder-
ing code reuse attacks in Harvard-based architectures rely on adding additional
hardware [15] or modifying the existing one [13]. Such countermeasures introduce
additional costs to these devices that cannot be overlooked. This is especially
critical in scenarios where devices are expected to be inexpensive, as it usually
happens with many IoT deployments. Furthermore, there are settings where the
hardware is already given “at it is”, such us in industrial environments [21],
vehicular systems, and home automation projects [26], to name a few.

Contribution. In this work, we demonstrate code reuse attacks against AVR
devices and provide a software-based defense named AVRAND. The novelty of
our work lies in providing an inexpensive solution targeting endpoint users and
distributions rather than manufacturers, vendors, or hardware architects. We
argue that the capabilities of an attacker are much more limited when dealing
with hardware constrained devices such as an Arduino. Based on this, we balance
the trade-off between its capabilities and the level of protection implemented to
provide a practical and robust countermeasure. To the best of our knowledge,
this is the first work looking at this problem from this viewpoint that proposes
a software-based defense for AVR-based devices. Our randomization engine is
encoded in the bootloader section of the device and, thus, it is executed after
every reboot. Moreover, since the bootloader itself is a potential target for code
reuse attacks, AVRAND applies an obfuscation technique using an XOR-based
self encryption function. To facilitate reproducibility of our results and foster
research in AVR security, we provide functional prototypes of the attack and the
proposed defense for an Arduino Yun device (Section 5), which is an emerging
platform widely used in the IoT arena.

2 Background

In this section, we provide a brief background on the target systems studied in
this work: the AVR architecture and the Arduino Yun, which is the platform
used during our experimentation.

2.1 The AVR architecture

AVR is a modified Harvard architecture implemented by Atmel in 1996. AVR is
widely deployed in embedded devices due to its simplicity and low cost, and it
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(a) Schematic view of AVR memories. (b) Arduino Yun board.

Fig. 1: AVR and Arduino Yun boards.

is present in a variety of applications, including automotive systems [3], the toy
industry, and home automation systems [26].

AVR devices store code and data in memories that are physically separated,
i.e., the flash memory and the data or SRAM memory (see Figure 1a). To allow
self-programming, two special instructions are provided to load data from flash
to SRAM memory (Load Program Memory, LPM), and to store data in the flash
memory (Store Program Memory, SPM). The latter can only be invoked from
a special memory region called the bootloader, and thus all the reprogramming
code must reside in this region. The flash memory in AVR is structured in pages,
which are addressed different than the SRAM. Actually, the program counter
(PC) does not hold the actual address, but a page-based index. Specifically, the
most significant bits of the PC are mapped to the page number, while the less
significant bits are mapped to the offset within the page. As shown throughout
this paper, AVRAND uses this property to manage the memory randomization
efficiently. AVR has 3 special registers, called X, Y and Z, that are used for
direct and indirect addressing and have added properties such as automatic
increment (e.g., Y++) or fixed displacement (e.g., Y+k). These special registers
are mapped with 8-bit general purpose registers (e.g., Y is the concatenation of
r28 and r29).

The SRAM contains the program data, the heap and the stack, which are
unique as AVR runs a single process at a time. A property of AVR is that
the stack starts at the highest address and grows towards lower addresses (i.e., a
PUSH instruction stores a new byte in the stack and decreases the stack pointer),
while the heap grows towards higher addresses and can eventually collide with
the stack. Additionally, the data memory also contains I/O registers such as
the status register or the stack pointer. This implies that the stack pointer is
directly mapped in program memory and can be read and write by load and
store instructions, respectively.

Code running in embedded AVR devices may contain a huge amount of
firmware and library functions required to integrate and operate different sen-
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sors, such as thermometers, motion sensors, cameras, etc. Since AVR does not
provide dynamic loading of libraries, integrated libraries are statically linked at
compilation time. AVR binaries follow the Hexadecimal Object File (HEX) for-
mat [16]. These binaries must be uploaded (flashed) to program memory using
either an In-System Programming interface (ISP) or by communicating with the
bootloader using a universal asynchronous receiver/transmitter (UART) [2].

2.2 Arduino Yun

Arduino4 is an open-source platform originally proposed to be used in electronics
and microcontroller projects. With the increasing interest in the IoT, the Ar-
duino Yun has been designed specifically to run IoT applications, by combining
both the low-level electronics originally present in other Arduino devices with
higher level architectures running a Linux based operating system. Specifically,
the Arduino Yun contains a board based on two chips (see Figure 1b). One is
the Atmel ATmega32u4 (AVR MCU) and the other is an Atheros AR9331. The
Atheros processor holds a Linux distribution based on OpenWrt and has built-in
Ethernet and WiFi support.

The AVR chip and the OpenWrt are connected through a Bridge, i.e., a logical
component programmed in the OpenWrt which communicates with the AVR chip
using a serial port. An Arduino Bridge library provides the required function-
ality to communicate applications running in the AVR chip with the OpenWrt,
including a Process object that allows to run shell commands in the OpenWrt

shell or a HttpClientd that allows to connect the AVR to internet. As shown
in Section 3.3, the proposed exploit uses functions from the Bridge library to
compromise the OpenWrt shell.

3 Code reuse attacks in AVR

In this section, we demonstrate code reuse attacks in AVR binaries using ROP
and other similar exploiting techniques [27]. We first present the adversarial
model assumed and then provide a general description of the attack. Finally, we
describe the implementation of a prototype for Arduino Yun devices.

3.1 Assumptions and adversarial model

In this work, we consider the following assumptions and adversarial settings:

– The targeted embedded device is based on the AVR architecture and it is
not tamper-proof. Thus, if physically accessible, the adversary can dump all
the contents from the data and code memories at any time.

– The adversary cannot inject arbitrarily large payloads. We elaborate more on
this limitation in Section 3.2. However, an adversary could inject relatively
large payloads in memory by using software resets and multiple runs.

4 https://www.arduino.cc
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– The adversary could gain the control of the program flow by remotely ex-
ploiting a memory corruption vulnerability on the device, for example a stack
or heap overflow.

– The program includes library functions that are useful for the adversary. For
example, we assume that the program includes the Bridge lib that allows
communication between the AVR and OpenWrt chips in Arduino Yun.

3.2 Attack overview

In this section we present a code reuse attack for AVR devices. Due to the limited
capacity of the AVR memory, the adversary is not able to use large exploiting
payloads, and thus she has to inject additional data into the SRAM. This is
also used when a function library function is called by reference, i.e., when the
arguments are passed as pointers to data memory. Contrarily to other architec-
tures, function arguments in AVR are passed via registers whenever possible,
and through the stack only when the arguments are larger than the length of
the registers. An adversary may also be able to change any data from the SRAM
memory. For example, Habibi et al. [15] proposed an attack that modifies the
registers of an Unmaned Aerial Vehicle (UAV) gyroscope to control its flight.

Injecting data into the SRAM. Injecting data into the SRAM is limited
by the amount of memory available for the exploit. The main idea is to use
a set of gadgets that, when chained together, could potentially store data into
non-volatile areas of the SRAM memory [12, 15]. We call this chain of gadgets
Store data. Ideally, the fewer the number of gadgets used the better, as each gad-
get may require to include its pointer in the exploit. During our experimentation,
we have found a pair of gadgets that allow an adversary to build a payload that
loads several values in memory recursively. We provide more details of these
gadgets and how they are used in our prototype in Section 3.3.

Since the stack is located at the highest address of the SRAM memory, the
space available to inject a payload after overflowing the stack is significantly
limited. When a buffer is locally declared in a function, the return address is
stored at a higher position of the memory allocated in the stack. This position
may be close to the end of the SRAM address space (see Figure 1a). Thus, the
adversary is not able to send large attack payloads as it is usually done in ROP
attacks against conventional architectures [23]. To partially overcome this issue
and provide more space, the stack pointer can be moved to the beginning of
the buffer as proposed in [15]. In this way, the buffer itself can be fully used
to allocate the payload, and the size of the payload injected by the adversary
intrinsically depends on the available buffer size. We call the gadgets that allow
to move the stack Stack move.

Given that the amount of injected data is limited, exploiting the same vulner-
ability multiple times could place the attacker in an advantageous position. How-
ever, exploiting a buffer overflow usually leaves the stack in a non-deterministic
state and the attacker is usually forced to reset the device each time to maintain
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the device functional and/or resume its normal operation. To this end, existing
works proposed to repair the stack right after the attack succeeds [14, 15]. While
this is useful to modify a few memory data bytes (such as the UAV gyroscope),
repairing the stack does not provide the adversary with extra data space since
the payload is always limited by the memory size—in fact, using the gadgets
that repair the stack requires additional space in the payload. In this regard,
Francillon and Castellucia [12] proposed to perform a software reset by directly
jumping to the address 0x0000 (i.e., the reset vector). However, this approach
is not suitable for modern AVR chips since it does not guarantee that the I/O
registers are restored to their initial state5. In this work, we propose the use of a
gadget, namely Reset chip, that uses a watchdog reset, which is one of the reset
sources used in AVR. More precisely, the gadget first establishes a watchdog
timer and then jumps to an infinite loop. When the timer expires, the watchdog
causes a software reset.

Figure 2 shows a schematic view of a generic data injection attack. When
the vulnerable function is called, the return address is pushed on the stack. The
attack starts by overwriting this address with the address of the Stack move
gadget (Step 1), which pops the new address and stores it in the memory address
corresponding to the stack pointer (SP). From there on, the buffer constitutes
the new stack (Step 2). Then, the address of the next gadget is popped from
the stack, so the first bytes of the buffer must point to the Store data gadget
(Step 3) that stores the data at a given address (Step 4). As showed in Section
3.3, both the stored data and the SRAM memory addresses must be included in
the payload. Finally, when the Store data gadget returns (Step 5), the program
jumps to the Reset chip gadget (Step 6), which performs a clean software reset
of the AVR chip. The adversary, while needed, may send a new payload to
exploit the vulnerability and store additional data in consecutive addresses. In
every reboot, the .data and .bss sections (i.e., data and heap) of the SRAM
memory are cleared and reloaded, so if the adversary stores data in a memory
area different from these (e.g., the region tagged as unused in Figure 1a), then
such data will persist across reboots.

Calling library functions. Once the required data are stored in memory, the
adversary is ready to use library functions. The idea is to perform a similar
approach to classical “return-to-lib” attacks [27]. Arguments are passed through
registers, which can be easily loaded by using gadgets that pop values from the
stack and stores them in registers. During our experimentation we have observed
that these gadgets are frequent in many AVR binaries.

The adversary is now ready to call the library function using a chain of gad-
gets that performs the desired operation. First, she must load the arguments
and prepare the required data (e.g., pointers to objects) using the data injec-
tion scheme explained above. Next, the program flow must jump to the desired
function itself.

5 http://www.atmel.com/webdoc/AVRLibcReferenceManual/FAQ 1faq softreset.html
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Fig. 2: Scheme of the data injection ROP attack.

3.3 Attack implementation in Arduino Yun

In this section, we describe and implement an attack that targets Arduino Yun
devices, allowing an adversary to execute remote commands in the OpenWrt

environment of these devices (i.e., bypassing the Bridge between the two chip-
sets). The attack comprises two phases: injection and invocation. First, it starts
by injecting the command into SRAM memory as a String object, and then
forces the execution of the function runShellCommand(String* cmd) from the
Bridge Library6 by passing as arguments a pointer to the injected object.

We assume that the adversary is able to exploit a memory corruption vul-
nerability and hijack the control flow. In this work, we have exploited a function
(implemented ad-hoc for the prototype) that receives data from the serial port
and stores it into a buffer, without checking its bounds. By sending crafted data,
we are able to overwrite the return address of the function and take control of
the program flow. We next explain the implementation details of the attack.

Command injection into the SRAM. Table 1a shows a pair of gadgets
that chained together move the stack pointer (SP) to a given address. The first
gadget loads the new SP to registers r28 and r29, while the second gadget stores
the SP in 0x3e and 0x3f, which are actually the positions mapping the SP.
This is possible because AVR uses fixed positions of data memory to store I/O
registers, including the SP. Gadgets used to move the stack are very frequent in

6 https://www.arduino.cc/en/Reference/YunProcessConstructor
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AVR binaries, since they are used to save and restore the stack within the called
functions.

Address Instructions Description

Stack mov 1
0x0c84 pop r29 Loads the new

pop r28 stack pointer in
ret registers r28 and r29

Stack mov 2
0x39e4 in r0, 0x3f

Stores the new
address in the SRAM
memory addresses
mapping the stack
pointer (i.e. 0x3e and
0x3f)

cli
out 0x3e, r29
out 0x3f, r0
out 0x3d, r28
movw r28, r26
ret

(a)

Address Instructions Description

Store data
0x2bf6 std Y+3, r17 Stores the values

from r17 and r18 in
addresses Y+3 and
Y+4 (mapped to r29
and r28) and jumps
to 0x2c00.

std Y+2, r16
ldi r24, 0x01
rjmp .+2

Load data
0x2c00 pop r29

Loads the new values
at r17 and r16 and
new addresses at r28
and r29

pop r28
pop r17
pop r16
ret

(b)

Table 1: Gadgets used to move the stack to a desired position (a) and to inject
data in SRAM (b).

To store the data in SRAM, we have found an optimal pair of gadgets (see
Table 1b) that are included with the string library (imported by default in all
Arduino programs). As these gadgets are consecutive in the code, they can be
used recursively. In the first interaction, the gadget Load data at address 0x2c00
loads data in registers r16 and r17, and the destination address in registers r28 an
r29. As explained in Section 2.1, registers r28 and r29 are mapped to the register
Y used for direct addressing. Here, the gadget Store data showed in Table 1b uses
the fixed displacement of the Y register to store the values from r16 and r17 in
addresses Y+2 and Y+3 respectively. Because the end of the gadget Store data
directly jumps to the gadget Load data, they can be used repetitively, as shown
in Figure 3.

To perform a software reset of the AVR chip, we use one of the reset sources
provided by the AVR architecture, the watchdog reset, which establishes a time-
out and resets the chip when it expires. Table 2a shows the gadgets used. A first
gadget enables the watchdog and sets a timeout to 120ms. This gadget is present
in all Arduino programs since it belongs to one of its core libraries, CDC (the
USB Connected Device Classes). The second gadget performs an infinite loop
and is intended to wait until the timer expires. This gadget, which consists of
just one instruction, is the last instruction of every Arduino program and repre-
sents the ”stop-program” instruction that maintains the device in an idle state.
By chaining these two gadgets, the chip automatically resets and the normal
operation of the Arduino device is restored. Then, the adversary may send a
new exploit to store more data, depending on what she wants to inject.
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Fig. 3: Schematic view of a payload that inserts the command ”curl”
(0x63,0x75,0x72,0x6c) into a the address 0xef00 of SRAM memory using the
gadgets from Table 1b.

Command invocation In the previous section we have described how an ad-
versary can store any data in the SRAM. Now, we show how she could use such
data to execute commands in the OpenWrt of an Arduino Yun. Using the data
injection process, the adversary writes in memory the raw sequence of characters
of the command (e.g., “curl”, as shown in Figure 2). Then, a String object point-
ing to such sequence must be created. A String object has three components.
First, a pointer to the sequence of characters (2 bytes); second, the length of the
sequence (2 bytes); and, finally, its capacity (2 bytes).

To execute the inserted command, we call the function runShellCommand of
the Bridge Library. This function takes as argument the address of the String ob-
ject that represents the command, which is provided in registers. The Load arguments
gadget, showed in Table 2b performs such loading. In many AVR binaries it is
frequent to find pop instructions before a return, and thus it can be assumed that
this gadget can be easily obtained. Finally, after the Load arguments gadget is
executed, the program should directly jump to the runShellCommand function
which uses the Bridge between the two chips to execute the desired command
in the OpenWrt.
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Address Instructions Description

a) Reset chip 1
0x1c56 ldi r18, 0x0B Sets the timeout

ldi r24, 0x18 to 120 ms, disables
ldi r25, 0x00 interrupts and enables
in r0, 0x3f the watchdog
cli
wdr
sts 0x0060, r24
out 0x3f, r0
sts 0x0060, r18
ret

Address Instructions Description

a) Reset chip 2
0x3a0a rjmp .-2 Relative jump to itself

(i.e. infinitive loop)

b) Load arguments
0x2b52 pop r25 Loads the arguments

pop r24 into registers. Note that
pop r23 some useless instructions
pop r22 are omitted. Upon return
... the program should jump
ret to runShellCommand

Table 2: Gadgets used to reset the microcontroller (a) and to load the arguments
to the function runShellCommand (b).

4 Design and overview of AVRAND

In order to defeat code reuse attacks, we propose AVRAND, a solution that
randomizes the layout of the flash memory where the binary code resides and
obfuscates the randomization engine. Since the core of AVRAND resides in the
bootloader of the flash memory, it re-randomizes the complete program memory
after every software reset, thus preventing attacks that exploit the vulnerability
several times (e.g., brute force attacks) and requiring adversaries to use one-shot
clean attacks (i.e., attacks that do not rely on software resets). Moreover, as we
discuss in Section 6, AVRAND could be configured to defeat other exploitation
techniques that do not require to reset the device.

AVRAND is composed by two main modules: preprocessing and runtime,
as depicted in Figure 4. First, the preprocessing module modifies the HEX file
that is being uploaded into the AVR device so that it can be randomized. This
module is executed once in an external computer, before uploading the binary to
the device. Second, the runtime module is installed in the bootloader section of
the device to perform the actual randomization of the flash memory after each
device reset. Moreover, this module uses an obfuscation technique to prevent
code reuse attacks on the bootloader, by applying XOR-based encryption.

Preprocessing module This module is executed once and prepares the code
so that it can be randomized. First, it reads the original HEX file and gets
a list of all the control-flow statements, including both absolute and relative
pointers within the code (e.g., jumps and calls, conditional branches, etc.) and
also indirect pointers that may be in the data section (e.g., C++ vtables). Using
relative offsets is common in AVR binaries due to code-size optimization, but
this is not compatible with a randomization approach since relative positions
change from one layout to another. Thus, during the preprocessing module all
the relative operations are replaced by their absolute versions (e.g., RJMP are
substituted by JMP and RCALL by CALL instructions).

Since the flash memory in AVR is structured in pages, AVRAND performs
randomization at a paged-grained level. However, in order to preserve the se-
mantics of the entire code, pages are linked using JMP instructions. Thus, all
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Position_page2Position_page2Position_page1Position_page1 Position_page3Position_page3 ......
XOR

Compiled runtime module (HEX)
:107E0000FF920F931F93CF93DF931FB7F894F999C5
:107E1000FECFEB0123E0FB0120935700E89507B666
:107E200000FCFDCF20E030E001E0DA01A20FB31F3B

...

XOR

Initial Secret key

Data memory

Fig. 4: AVRAND overview.

control-flow statements in the code point to absolute positions and can be re-
calculated at runtime during each randomization. Accordingly, the preprocessing
module outputs a list of public metadata (i.e., we assume that an adversary may
know this information) used to update the offsets during the randomization (see
Section 5.1 for details). Furthermore, a list of initial page positions is also cre-
ated to indicate the offsets of each page in the binary, which must be kept secret
from adversaries and thus it is named private metadata.

The modified binary code is then flashed onto the flash memory and the
public metadata in the SRAM, while the private metadata is encrypted with the
XOR key and flashed in a non-readable memory area of the embedded device.
For example, many AVR devices are equipped with an external EEPROM mem-
ory that is not directly addressable without special functions in the program
binary, so it can be used to store the private metadata. Finally, the initial pri-
vate key is stored in a fixed position of the flash memory. Note that during each
randomization a new key is generated which overwrites the previous one.

Runtime module This module is installed in the bootloader section of the
device and it performs the actual randomization of the memory layout each time
the device is reset. First, it reads the current page positions (i.e., the start address
of each page) from the private metadata to get the actual memory layout of the
device, and decrypts it using the secret key. Second, it generates a map of random
swaps indicating couples of pages randomly paired that must be exchanged.
This map is used to update the current page positions in the private metadata.
Furthermore, the offsets of every control-flow statement in the program memory
are re-calculated and updated by using the new positions and looking at the
public metadata. Finally, the entire memory is re-flashed, swapping all the pages
that purely contain code. To do this, both pages are temporary stored in the
SRAM and then they are re-written into each others’ offsets of the flash memory.
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Note that a complete random permutation of the memory layout would require
to store an entire copy of the binary in SRAM, which demands much more
memory than keeping only two pages at a time in memory.

The entire flash memory is structured in pages, but certain pages cannot be
shuffled during the randomization. These are pages that contain data (which
are either before or after the code, never interleaved) and the first two pages
which contains the interrupt vectors. Pages containing data remain in constant
memory offsets. However, two pages may contain both data and code (i.e., one
page before the program and one page after the program), and code in these
pages may used in a code reuse attack. In the worst case, each of these two
pages will have a single byte of data and code in the bottom part of the section
(i.e., page size − 1). Thus, the maximum size of code that remains constant
during randomization is 2 ∗ (page size − 1) (i.e., 254 bytes in the Atmega32u4
chip).

Each page contains 128 bytes of code, i.e., approximately 42 instructions.
Thus, gaining knowledge of a single page does not position the attacker in a
privileged situation since she may not find enough gadgets to perform a code-
reuse attack. Moreover, the probability of guessing a page in AVRAND is 1/Np,
where Np is the number of swapped pages (which depends on the size of the
program memory, as discussed below). This probability outperforms state-of-the-
art solutions like Isomeron [10], which has a probability of 0.5 of being discovered
at each gadget.

As stated before, the runtime module is compiled and uploaded into the
bootloader section of the embedded system. Accordingly, this is the first piece
of code being executed after every device reboot, which prevents code reuse
attacks using software resets and reducing the chances for brute force attacks
aiming to discover the memory layout. However, the bootloader itself could be
the target of code reuse attacks (in our experiments, the bootloader contains
around 4KB of code) and thus it should be protected as well. AVRAND solves it
by applying a simple obfuscation technique using an XOR based encryption. As
such, most of the bootloader is stored encrypted. The runtime module uses a non-
encrypted routine that is executed at the beginning to decrypt the bootloader
and then jumps to its main function. Once the randomization is finished, and
before jumping to the application section, a new random key is generated and
used to re-encrypt the bootloader and the private data from the EEPROM.

5 Implementation

We have developed a freely available7 prototype of AVRAND for the Atmel
Atmega32u4 chip included in the Arduino Yun platform. In this section, we
discuss its implementation details.

7 http://www.seg.inf.uc3m.es/~spastran/avrand/
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270: 09 f4 brne .+2 ; 0x274     
272: 02 c0 rjmp .+4 ; 0x278
274: 0c 94 34 01 jmp 0x268 ;  0x268
278: 24 e0 ldi r18, 0x04 ; 4

270: d9 f7 brne .-10; 0x268
272: 24 e0 ldi r18, 0x04 ; 4

Fig. 5: Transformation of a relative conditional branch (left) to its absolute ver-
sion (right).

5.1 Preprocessing module

We have implemented the preprocessing module in Python. It takes as input
the HEX file of the original application and generates a modified HEX in such a
way that it can be randomized at runtime by the bootloader. The initial list of
control-flow statements is obtained from the assembly code, which is generated
from the HEX file using the open source tools avr-objcopy and avr-objdump [19].
Control-flow statements may be one of the following: relative or absolute jumps
(RJMP/JMP), relative or absolute calls (RCALL/CALL), conditional branches
(BR), pointers to function prologues and epilogues (used by some functions to
save registers in the stack), pointers to global variable constructors (CTORS) and
C++ specific virtual pointers (vpointers). Also, a list of indivisible instruction
sequences is obtained, in order to avoid placing jumps between them during the
page linking. Examples of such non-breakable instructions are all the two-word
instructions, or the CPSE instruction that compare two registers and jumps to
PC+2 or PC+3 depending on the result .

Then, each instruction using relative offsets (i.e. RJMP and RCALL) is sub-
stituted by its corresponding absolute version (i.e., JMP and CALL). Changing
relative by absolute versions adds 2 extra bytes. In case of conditional branches,
we follow an approach similar to Oxymoron [4] to transform them into an abso-
lute version, by adding a RJMP and a JMP instruction. This transformation is
shown in Figure 5. The whole BR/RJMP/JMP block is considered as an indi-
visible sequence in order to maintain its semantics. As it can be observed, each
conditional branch modified adds 6 extra bytes to the binary code. Every time
that the module inserts new code bytes, the offsets of the entire program are
updated accordingly.

The next step is to link the pages using absolute JMP instructions, which
are inserted in the bottom of each page, i.e., the last instruction of every page
is a JMP to the first instruction of the next page. In this way, whenever a page
changes its position during randomization, these linking pointers can be updated
to point to the new address where the next page begins. The insertion of a JMP
may occur between an indivisible sequence of instructions. If such situation is
detected, the entire sequence is moved forward, to the beginning of the next
page, by adding padding (i.e., NOP instructions).

Finally, the new HEX file is generated along with the public metadata and
the private metadata. The public metadata provides the list of structures rep-
resenting each control-flow statement. Concretely, each structure indicates the
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page where the statement is, the offset within the page, the type (i.e., CALL or
JMP, prologue/epilogue function pointer, C++ vpointer or pointer to a global
variable initialization routine), and the page pointed. Note that the offset within
the page does not change in the randomization, and thus it is not necessary to
store it since it can be obtained from the PC address, as explained in Section
2.1.

The binary code (HEX) and the public metadata are uploaded to the flash
and data memories respectively, while the private metadata is encrypted (using
an XOR-based encryption and a private key of 128 bytes) and uploaded to
a memory region that is not directly observable by an adversary. During our
experiments, we used the external EEPROM present in the Atmega32u4 chip of
the Arduino Yun. In order to upload these contents to the binary file, we use
the open source tool avrdude [11].

5.2 Runtime module

The main purpose of the runtime module is to perform the randomization of
the entire application after every device reset. Thus, it must be stored in the
booloader section of the flash memory. However, the bootloader contains critical
functions from the standard library, such as those for reading and writing the
private metadata. In a scenario where the adversary can reuse any code from
the flash section, this private data would be accessible by just jumping to the
proper function in the bootloader.

To protect the bootloader, we introduce a self-encryption and self-decryption
routines that obfuscate its contents. Thus, these are the only two routines that
could be potentially used in code reuse attacks. In our prototype they both
occupy less than 2 pages (i.e., 256 bytes), which prevents the use of a practical
ROP attack against our system. Moreover, these non-encrypted pages can also
be shuffled by the randomization engine to prevent attackers from pinpointing
them. Indeed, as the adversary is forced to perform the attack in one-shot, then
if she is able to decrypt the bootloader, when trying to use it or read the private
metadata, the device may be reset, which modify the private metadata.

The runtime module can be divided into 3 main parts: an initialization rou-
tine, the bootloader itself, and the encryption/decryption routine. The first one
holds the Interrupt vectors and some required initialization instructions, and
jumps to the decryption routine. The second part, which is encrypted, contains
the main functionality to setup the hardware and randomize the binary code.
Finally, the last part encrypts again the bootloader and the private data, and
jumps to the beginning of the application code.

The decryption process reads the key (stored at a fixed position of the flash
memory). This key has the same length than the page size (i.e., 128 bytes). Then,
it reads the encrypted bootloader page by page, performing the XOR to obtain
the clear-text of the code, and rewrites the output in the same position. Then,
it jumps to the beginning of the decrypted bootloader.

The bootloader starts by setting up the required hardware (e.g., to initialize
the USB or the clock of the device). It then performs the actual randomization
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of the application binary. To do so, it first reads the private metadata and loads
it into a temporary buffer of the SRAM memory (which is deleted once finished).
Second, it creates a random list of pairs of pages (i.e., the random swap), that
must be exchanged, and updates the private data by exchanging the page posi-
tions. We use the rand function implementation from libc, which uses a LFSR
based random number generator. However, in order to get the random seed, we
rely on a timing jitter produced after the variance introduced between the in-
ternal timer of the AVR chip and the oscillator used by the watchdog timer [1].
In this way, AVRAND produces truly random numbers in each execution of the
randomization engine.

Once the random swap map is obtained, the bootloader processes one by one
the pages from the bottom of the application section. Each page is temporarily
stored in data memory, its control-flow statements are modified, and then it
is stored again in the position indicated by the private metadata. Control-flow
statements are updated by looking at the public metadata (i.e., where the pointer
is, its type, and the page being pointed at) and the private metadata (i.e., the
new position of the pointed page). In order to swap two pages, they are both
stored in SRAM memory and then re-written in each other’s previous position of
the flash memory. Thus, the size of SRAM required during the randomization is
page size∗2. Finally, the new page positions (i.e. private metadata) is encrypted
again, and written to the EEPROM memory. In order to prevent brute force
attacks against the cryptosystem, the randomization engine generates a new
XOR key each time. Figure 6 shows a schematic view of the memory layout of
the application section before and after randomization.

Finally, when the randomization process is finished, the last step is to ob-
fuscate the bootloader again using the XOR-based encryption routine and the
newly generated key.

FLASH Memory

Page 1

Page 2

Page 3

...

Page 150

0x0000: call 0x3eb0
   movw r22, r12     
   ldi r24,0x09       
   ldi r25, 0x03    

...

0x007c: jmp 0x0080

0x0000

0x0080

0x0100

0x4B00

Link to page 2 
(at 0x0080)

FF FF FF FF ...

Bootloader
0x7000

Application 
code

Unused

Bootloader 
section

EEPROM Memory

Absolute 
pointer to 
page 125 (at 
0x3E80) + 
offset 48

...

Page 125
0x3E80

0x0000 0x0080 0x0100 ... 0x4B00

Page 1 Page 2 Page 3 Page 150

... 0x3E80

Page 125

FLASH Memory

Page 87

Page 150

...

Page 1

...

0x2b80: call 0x1e30
   movw r22, r12     
   ldi r24,0x09       
   ldi r25, 0x03    

...

0x2bfc: jmp 0x4B00

0x0000

0x0080

Updated link to 
page 2 (at 0x4B00)

Page 2
0x4B00

Application 
code

EEPROM Memory

0x2B80

...

Updated 
pointer to 
page 125 (at 
0x1E00) + 
offset 48

0x2B80 0x4B00 0x0100 ... 0x0080

Page 1 Page 2 Page 3 Page 150

... 0x1E00

Page 125

...

Page 125
0x1E00

(a) (b)

Fig. 6: Memory layout of the flash memory before (a) and after (b) randomiza-
tion.
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6 Discussion

AVRAND hampers code reuse attack by randomizing the application layout
from the bootloader and by obfuscating the bootloader itself. We next provide
a discussion of the suitability of our approach and the introduced overhead.

6.1 Suitability of AVRAND

AVRAND is designed specifically for AVR architectures. However, it could also
be applied to other systems using a modified Harvard-based architecture, given
that it is provided with a bootloader section that reprograms the flash memory.
While the core idea of AVRAND (i.e., randomization of the memory layout) has
been widely studied for other architectures such as x86 [5] or ARM [6], few works
have addressed the problem in AVR. Moreover, our focus is on using a lightweight
cryptographic routine, since AVR is designed for resource-constrained embed-
ded devices. In our prototype we have used an XOR-based encryption and a
linear PRNG, which fit well in the space given for the bootloader section (4KB).
Nevertheless, our architecture is designed to accept stronger cryptographic func-
tions if enough resources are available (e.g., using AES or 3DES and the more
robust MersenneTwister PRNG). Nonetheless, in addition to a greater perfor-
mance overhead, the use of complex encryption would have an extra drawback
in AVRAND: since the code used to encrypt and decrypt the bootloader can be
used in code-reuse attacks, using encryption and decryption routines with larger
code size increases the available code for attackers. As explained in Section 5.2,
currently the XOR-based encryption only occupies 2 pages.

External hardware can also be applied to palliate code reuse attacks [13, 15].
We emphasize that our approach is complementary, but it benefits from a pure
software-based solution. This perfectly suits scenarios where cost-minimization
strategies play an important role in the device design. Francillon and Castellucia
mentioned different protection mechanisms to prevent code injection attacks
[12], such as preventing software vulnerabilities or using stack canaries. These
mechanisms aim at avoiding the control-flow hijack and are complementary to
the randomization provided by AVRAND. Our solution assumes that somehow
the control flow may be hijacked, and thus it intends to hinder code reuse.
Additionally, when the sensor is not physically accessible by the adversary, or
if it is tamper-proof, then the chances for and adversary also decrease. While
this may be subject for future research, we consider that AVRAND takes a step
forward in the security of AVR devices.

6.2 Limitations

During the design of AVRAND, we have assumed that the exploit size is re-
stricted by the size of the SRAM memory. For example, as explained in Section
3.2, the stack size may not be large enough to store a complex payload, thus
limiting stack-based exploitation and requiring the adversary to reset the device
when injecting large payloads in memory. Additionally, some devices based on



18 S. Pastrana, J. Tapiador, G. Suarez-Tangil, P. Peris-López

the TinyOS restrict the packet size to 28 bytes. However, this is not the case
of other chips like the Atmega32u4. Accordingly, other exploitation techniques
such as heap or integer overflows may provide the adversary with the ability to
inject larger payloads.

In this work, we have considered that the memory should be re-randomized
with every device reset. Indeed, it is reasonable that a reset may be produced
because the device is under attack or some other abnormal activity. However, we
are aware that a smart adversary may find techniques to attack the sensor with-
out causing resets or a system crash (e.g., by cleaning the stack after the payload
execution [15, 14]). In any case, AVRAND could be configured to reset the de-
vice periodically, or only under certain conditions. Due to the limited number
of write/erase cycles of the flash memory (e.g., 10,000 in the Atmega32u4 chip),
this feature should be carefully adjusted to meet the security requirements while
maximizing the lifetime of the chip, which in turn depends on the application
scenario. For example, by periodically randomizing the device every 5 minutes,
a device using the Atmega32u4 chip would last approximately 35 days.

Finally, it is important to understand that AVRAND is a countermeasure to
code reuse attacks in AVR based chips. However, these chips may be directly
connected to other sensors (e.g., wireless antennas or thermometers) or chips
(e.g., the Atheros chip in the Arduino Yun). In this last case, the Atheros chip
in the Arduino Yun has far more resources than the AVR to secure the device.
Indeed, the installed OpenWrt OS has support for ASLR, DEP, and other security
measures such as authenticating and encrypting communications (e.g., through
SSH). If the adversary could gain access to the MIPS-based chip (for example,
by performing a brute force attack against the SSH or exploiting a vulnerability
in the Linux kernel), then the security gained by AVRAND would be useless.
However, no matter how strong the security measures taken in the Atheros chip
are, the exploitation of AVR opens a security hole, since both chips are connected
through the Bridge library. This is where AVRAND is particularly helpful.

6.3 Overhead incurred by AVRAND

We have tested the prototype of AVRAND in the Atmel atmega32u4 chip in-
tegrated within the Arduino Yun device, equipped with a 32KB flash Memory
(from which 4KB corresponds with the bootloader section). Our evaluation in-
dicates a noteworthy increase in the code size due to changes introduced by the
preprocessing module. We have tested our prototype on the entire set of exam-
ples included in the Arduino IDE software. While all the tested programs fit
in the flash memory, we have observed an average of 20% of extra code on the
modified binary. However, this overhead is related to a binary which has been
compiled turning on the optimization flags of avr-gcc [19], that prioritizes the use
of relative versions of control flow instructions. However, if these optimization
flags were turned off, as done in MAVR [15], then the difference between initial
code size and modified code size would be considerably smaller. Re-compiling all
the libraries without an optimization requires having the source code of every li-
brary (which is certainly not possible in case of proprietary code), so we decided
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to transform the binary directly in our preprocessing module, thus providing a
more general solution.

As for the time spent by the runtime module in the bootloader, our results
show that it requires an average of 1.7 seconds to randomize the code of our
proof-of-concept program, which takes 18 KB of the flash memory. For exam-
ple, a bootloader using the AVR 109 protocol [2] (that allows self-programming
without the need of external programmers) takes a minimum of 750 ms. Given
the security provided by AVRAND, we consider that an overhead of 1 second
is acceptable, especially since the bootloader is only executed whenever some
abnormal activity causes the device to reset.

7 Conclusions

In this paper, we have presented a software-based defense against code reuse
attacks for AVR systems—a modified Harvard architecture. These type of ar-
chitectures are popular among embedded devices used in different contexts. We
focus on providing an inexpensive solution tailored for resourced constrained
devices. Our system perfectly balances the trade-off between the attack surface
exposed in this class of devices and the level of protection required to defeat
code reuse attacks. Thus, we design an architecture based on a fine-grained ran-
domization defense with self encryption that does not require additional hard-
ware support. We have implemented a proof-of-concept for the Arduino Yun,
an emerging open-source platform widely used in the IoT arena. Our prototype
introduces a negligible overhead with respect to the normal operation of the
Arduino. We evaluated the proposed scheme against a code reuse attack based
on Return Oriented Programming that first exploits a buffer overflow to exe-
cute code from the Arduino libraries. Finally, to foster research in this area, we
provide functional prototypes of the attack and the proposed defense.
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