Highlights
Characterizing Linux-based Malware:
Findings and Recent Trends

J. Carrillo-Mondéjar,J. L. Martinez,G. Suarez-Tangil

e We show that a data-driven approach is key for modern malware forensics. We also show that understanding malware
is an important step in tackling the challenges posed to digital forensics by new computing platforms, such as those in
the Internet of Things (IoT).

e We build an automated system to study the problem of malware in IoT systems. Our system uses both static and
dynamic analysis, together with a similarity function designed to relate unknown samples to known threats.

e We use our system to assist a malware expert in the process of vetting recent unknown IoT malware samples and
characterizing their behavior.

e We dissociate the problem of understanding Linux-based IoT malware from the IoT architecture used for malware in
the wild.

Characterizing Linux-based Malware:
Findings and Recent Trends

J. Carrillo-Mondéjar®*, J. L.. Martinez and G. Suarez—Tangilb

Albacete Institute of Informatics (i3a). University of Castilla-La Mancha, Albacete, Spain
bDepartment of Informatics at King’s College London (KCL), London, UK.

ARTICLE INFO

Keywords:
Malware Forensics
IoT

Embedded Systems
Data Analytics
Machine Learning
Expert Systems

Abstract

Malware targeting interconnected infrastructures has surged in recent years. A major factor driving
this phenomenon is the proliferation of large networks of poorly secured IoT devices. This is exacer-
bated by the commoditization of the malware development industry, in which tools can be readily
obtained in specialized hacking forums or underground markets. However, despite the great interest
in targeting this infrastructure, there is little understanding of what the main features of this type of
malware are, or the motives of the criminals behind it, apart from the classic denial of service attacks.
This is vital to modern malware forensics, where analyses are required to measure the trustworthiness
of files collected at large during an investigation, but also to confront challenges posed by tech-savvy
criminals (e.g., Trojan Horse Defense).

In this paper, we present a comprehensive characterization of Linux-based malware. Our study is
tailored to IoT malware and it leverages automated techniques using both static and dynamic analysis
to classify malware into related threats. By looking at the most representative dataset of Linux-based
malware collected by the community to date, we are able to show that our system can accurately
characterize known threats. As a key novelty, we use our system to investigate a number of threats
unknown to the community. We do this in two steps. First, we identify known patterns within an
unlabeled dataset using a classifier trained with the labeled dataset. Second, we combine our features
with a custom distance function to discover new threats by clustering together similar samples. We
further study each of the unknown clusters by using state-of-the-art reverse engineering and forensic
techniques and our expertise as malware analysts. We provide an in-depth analysis of what the most
recent unknown trends are through a number of case studies. Among other findings, we observe that:
i) crypto-mining malware is permeating the IoT infrastructure, ii) the level of sophistication is increas-
ing, and iii) there is a rapid proliferation of new variants with minimal investment in infrastructure.

1. Introduction

The security community has been fighting against mali-
cious software (malware) for over three decades. Prior to the
proliferation of smartphones, malware developers mainly
targeted Windows due to its market share. More recently,
the focus of malware authors has slowly but steadily shif-
ted towards Linux-based operating systems, the main factor
being its growing popularity and the huge number of com-
puting devices that are part of the Internet of Things (IoT).

The IoT is globally expanding (it is expected there will
be 50 billion devices by 2020 [21]), providing diverse be-
nefits in nearly every aspect of our lives, such as industry,
transportation, smart-cities, health-care, entertainment and
our daily life. One of the main characteristics of an IoT in-
frastructure is the ability to capture data, and this collected
information can be the objective of attackers. Also, the huge
number of devices with very limited characteristics in terms
of available memory, bandwidth, power consumption, vul-
nerable software, etc. make it possible for a simple attack
to achieve many objectives, for example to create a botnet
network.

Embedded devices rely on a variety of different archi-
tectures. While PCs run predominantly on x86-flavored ar-

*Corresponding author
B4 javier.carrilloeuclm.es (J. Carrillo-Mondéjar);
joseluis.martinezeuclm.es (J.L. Martinez);
guillermo.suarez-tangilekcl.ac.uk (G. Suarez-Tangil)

chitectures, the IoT framework normally runs on open hard-
ware architectures such as Advanced RISC Machine (ARM),
PowerPC (PPC), and Microprocessor without Interlocked
Pipeline Stages (MIPS), among others. From an attacker’s
point of view, IoT devices are quite attractive compared with
PCs or laptops as they are online at all times and have no An-
tiVirus (AV) or Intrusion Detection Systems (IDS). These
devices are created with innovative features to attract users,
but often lack security and privacy measures. This makes
many [oT devices vulnerable to critical security issues, ran-
ging from the use of default passwords or insecure default
settings to outdated software with known security issues
[14]. All these weaknesses give attackers powerful attack
vectors.

The trend for Linux-based malware that is especially de-
signed for the IoT is relatively new compared with classical
malware, and therefore the number of known malware fam-
ilies is still small. The first malware family especially de-
signed for IoT devices is the Mirai botnet. This malware
family was mostly aimed at performing Distributed Denial
of Service (DDoS) attacks. The source-code was released
in 2016 but this malware was first seen at the end of 2014.
Since the release of Mirai’s source-code, new variants of
malware have proliferated. While some of these variants ex-
hibit similar behaviors to that of Mirai', others present novel
features and display completely different behaviors. Despite

n fact, these variants are adaptations of Mirai source code.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems Page 1 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

recent commercial reports having shown that IoT malware
has been constantly growing [38], there is very little under-
standing of what the main characteristic features of recent
malware samples are.

Due to the coexistence of multiple architectures in the
IoT, malware analysis is an important part of the forensic
process”, allowing the forensic analyst to know how a sample
behaves and what parts of the system it modifies. There-
fore, machine learning and pattern recognition can be seen
as a new paradigm for digital forensics [37, 44]. This is par-
ticularly relevant in malware forensics, where human ana-
lysts are confronted with a challenging adversarial task [27].
Advances in digital forensics require automated processes
to aid malware analysts in the process of understanding: 1)
whether a binary seen in an investigation is malware or not
(malware detection), and ii) which type of malware it is and
what its expected behavior (malware characterization) might
be. Furthermore, machine learning can be used to measure
the trustworthiness of files collected during an investigation,
but also to tackle challenges posed by tech-savvy criminals,
such as the Trojan Horse Defense [8].

Contributions. This paper presents a comprehensive study
of malware that is especially designed for Linux-based sys-
tems and tailored to IoT embedded devices. Our main con-
tributions are as follows. (i) We build an automated system
to study the problem of malware in IoT systems. Our sys-
tem uses both static and dynamic analysis, together with a
similarity function designed to relate unknown samples to
known threats. (ii) We use our system to assist a malware
expert (one of the co-authors of this paper) in the process of
vetting recent unknown IoT malware samples and character-
izing their behavior. We then present an in-depth analysis of
the most recent unknown trends through a number of case
studies. (iii) We dissociate the problem of understanding
Linux-based IoT malware from the IoT architecture used for
malware in the wild. We show the influence that the architec-
ture has on the spread of malware. Finally, we have released
the characterization produced for each of the clusters’.

Findings. By systematizing the analysis of the most rep-
resentative dataset of Linux-based malware collected by the
community to date [14] and dissecting samples in the most
relevant clusters, we have made the following findings:

1. We show that malware designed for architectures such
as x86_64 is quite different to that designed to at-
tack dedicated IoT architectures. Moreover, we also
show that applying Machine Learning (ML) to under-
stand large datasets of samples is challenging, espe-
cially when there is “noise” in the dataset. Due to
the fact that malware especially designed for Linux-
based systems is still simpler, the techniques based on
static analysis work well, mainly because the disas-

2Locate, identify, collect and acquire data which may be relevant to an

investigation.
3Characterization of the clusters can be down-
loaded from here: https://bitbucket.org/Dankitan/

characterizing-linux-based-malware-findings-and-recent-trends/src/
master/

sembly code of malware is not obfuscated. However,
dynamic analysis generally fails for two reasons: 1)
many samples cannot be executed on custom emulated
IoT devices, as they do not provide the correct en-
vironment for which the malware has been designed;
and ii) the Command and Control (C&C) server of
the sample changes quickly over time, rendering the
sample inoperative.

2. The level of sophistication of Linux-based malware
varies significantly. It ranges from malware which
uses classical but effective techniques such as brute
force attacks, to malware which exploits some vulner-
ability to spread to other victims. Here, we show that
crypto-mining malware is currently targeting IoT plat-
forms. Finally, malware designed for the creation of
bots to carry out denial of service attacks continues to
appear.

3. Linux-based malware is publicly available on the In-
ternet, causing the rapid proliferation of new variants
which base their main techniques on artifacts that are
publicly available on the Internet (e.g., on GitHub).

The rest of the paper is organized as follows. Section
2 introduces the threat overview related to this work. In
Section 3.1 the methodology for understanding IoT malware
is addressed. Section 4 presents the results of the classifi-
ers when applied to labeled samples and the visualization of
data. The results of the classifier tests with unlabeled sam-
ples are shown in Section 5. Section 6 shows the analysis of
different groups of unlabeled samples related to each other.
Section 7 contains a discussion about IoT malware, taking
as its starting point the analysis presented in this paper. The
state of the art in malware especially designed for IoT plat-
forms is described in Section 8. Lastly, our conclusions are
presented in Section 9.

2. Threat Overview

The IoT is a quickly developing entity made up of embed-
ded and multi-platform devices. The majority of IoI mal-
ware focuses on devices with default login credentials, and
these devices are being targeted by newly discovered Linux
malware. In the last few years, malware in the IoT has gained
more attention due to the damage caused by large-scale at-
tacks such as the one carried out by the Mirai botnet. The
increase in IoT devices together with the lack of updates in
the face of the emergence of new vulnerabilities has led to
the proliferation of malware targeting these platforms. In
addition, the publication or leaking of the source code of
some families such as Mirai or Bashlite causes new variants
to appear or the creation of new families using part of their
functionality or method to spread and infect new devices.

Unlike conventional malware that is aimed at a platform
and/or specific architecture, IoT malware is available for dif-
ferent architectures such as MIPS, ARM or PowerPC, among
others. Due to the wide range of Linux-based IoT devices,

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 2 of 17

https://bitbucket.org/Dankitan/characterizing-linux-based-malware-findings-and-recent-trends/src/master/
https://bitbucket.org/Dankitan/characterizing-linux-based-malware-findings-and-recent-trends/src/master/
https://bitbucket.org/Dankitan/characterizing-linux-based-malware-findings-and-recent-trends/src/master/

Characterizing Linux-based Malware:
Findings and Recent Trends

the creation of malware capable of attacking and infecting
many of them has become one of the priorities of cybercrim-
inals.

Currently, the methods used to spread through the net-
work are not very sophisticated. Primarily, they rely on the
use of brute force attacks using default credentials or known
vulnerabilities whose exploits are in most cases published on
the Internet. In this way, they take advantage of the lack of
updates and the use of default device settings by users.

Initially, IoT malware focused on the creation of bots to
be marketed for the carrying out of denial of service attacks.
Nowadays, the trend is changing and new samples are ap-
pearing for other purposes such as mining, which tries to
take advantage of existing resources in the form of infected
devices to mine cryptocurrencies.

Due to the time required to perform a manual malware
analysis and the large number of attacks that appear every
day, the security community is focusing its efforts on fight-
ing a threat that is constantly growing. Therefore, it is neces-
sary to build automated systems that, in addition to detecting
new samples, allow the extraction of knowledge about the
malware as well as its classification.

3. Methodology

In this section we present our methodology. We first
provide an overview of the system and then describe each
step in our pipeline.

3.1. Overview

Figure 1 shows an overview of the main building blocks
of our pipeline, which consists of three phases. First, we
have the feature extraction and the Modeling phase. The idea
of this phase is to perform an exploratory analysis to guide
the feature engineering process. Once the most relevant fea-
tures in the IoT realm are selected, we build a supervised ML
classifier capable of characterizing different known threats.
Second, there is the Discovery phase. In this phase, we use
the classifier trained in the previous phase and a metric based
on sequences of opcodes from the disassembling of the mal-
ware to relate unknown samples to samples of known thre-
ats. Finally, we have the Vetting phase, in which we unveil
novel threats that are unknown to the community. Specific-
ally, we combine the features engineered in the first phase
and the metric computed in the second phase with a custom
distance function. This distance function is used to perform
an unsupervised clustering task on unknown threats.

3.2. Modeling

In this section, we present the details of the Modeling
phase. This phase is responsible for the collection and clean-
ing of the data as well as the selection of the characteristics
that will be used for the learning of ML algorithms. The
results of this phase will be presented in Section 4.

Data acquisition and cleaning
This research is based on a sizable dataset of Linux-
based malware samples. Linux is the main operating sys-

ﬁ Dynamic Features b

Modeling

(Dara prepocessing L?;‘ng%:gd

and cleanin: PP
.L 9 classification

@—ﬁ Static Features

Discovery phase

Results Analysis
Calculate similary Relations labeled
J based on Jaccard and unlabeled
Index samples

Vetting
f Similarit Relations
;:L ity it cone

Figure 1: Overview of our system.

tem for the IoT infrastructure. For each malware sample, the
dataset contains: a binary, features extracted from an auto-
matic analysis and, in the majority of cases, a label charac-
terizing the type of malware using AVClass [49] for readily
available threat intelligence. Thus, the dataset consists of a
set of different malware samples distributed among differ-
ent architectures with Linux as the target operating system.
The dataset used in this paper has recently been collected by
the authors in [14] and the threat intelligence has been ob-
tained from VirusTotal [55]. As mentioned above, AVClass
has been used for labeling the samples. It is a tool which
unifies sparse labels given by different AVs to each malware
sample by assigning them to a malware family. Typically,
AVClass relies on VirusTotal reports to label each sample
on the basis of the labels provided by the AV. Basically, AV-
Class receives the labels from the AV engines and, once the
duplicated labels have been removed, a tokenization and fil-
tering process is applied. Finally, it applies an alias detection
process and a ranking, using the most frequent labels as the
family name for the family of a sample. One of the main lim-
itations of AVClass is that it cannot label samples when there
is no consensus among a minimum number of AV engines.
Therefore, the final decision of labeling a malware sample
depends on the quality of the AV labeling process. This pro-
cess is an error-prone task, as pointed out previously [28]
and as discussed below in Sections 4 and 6.3.

After obtaining the data and the labels, we clean the data-
set by removing those samples that cannot be labeled by AV-
Class, either because they are not detected by more than two
AV engines or because they are detected by the AV heurist-
ics and, therefore, their labels are generic. Table 1 shows the
number of samples distributed among the different architec-
tures and how many of them are labeled.

Feature analysis

The first approach to dealing with the problem of under-
standing malware behaviour, or even family malware classi-
fication, in the IoT is to apply Machine Learning techniques
to as much information extracted from the dataset as pos-
sible. Although the use of ML to classify malware has been
widely studied for other operating systems such as Windows
or Android, there are not so many studies focused on dif-

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 3 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

Architecture Labeled | Not Labeled
ARM 32-bit 493 62
ARM 64-bit 31 16
AMD x86-64 1765 1253
Intel 80386 607 113
MIPS | 1960 160
Motorola 68000 1169 47
SPARC 1144 26
SPARC Version 9 0 1
PowerPC 1509 60
PowerPC 64-bit 1 0
Hitachi SH 127 3
EM_ARC A5 1 0

8807 1741

Table 1

Samples distributed by architectures.

ferent operating systems for the IoT such as Linux-based
ones. One of the problems that we face when building a
generalized model is the diversity of existing architectures,
as Linux-based operating systems and compilers make the
same sample look different even when it belongs to the same
malware family. At this point, the first step was to try to
determine the most significant features from among all the
information available in the dataset. For this, we use the fol-
lowing feature extraction techniques.

e Static features: analysis focusing on intrinsic charac-
teristics in the executable itself without actually ex-
ecuting it. Within this group are characteristics of the
binary file such as headers, strings that appear in the
executable, machine code, imports of the library func-
tions, entropy, etc.

e Dynamic features: analysis focusing on features ob-
tained through monitoring the execution of an execut-
able. For example, system calls made to interact with
the system, information about opened files, memory,
etc, that is, information about the behavior of the ex-
ecutable at run time.

e Hybrid features: the combination of the two previous
methods, so that the characteristics used are extracted
in a static and dynamic way.

To design our model, we decided to follow the three ap-
proaches. Although using only static features can cause a
bad generalization of the model, since some of these char-
acteristics could change between different architectures (es-
pecially in the IoT scenario), we believe that there are some
static characteristics that should remain unchanged between
different platforms, as for example strings. In terms of dy-
namic features, the behavior of the same sample must be sim-
ilar regardless of the architecture on which it is executed. For
this reason, we started with a single static model, then we in-
cluded a dynamic model in the analysis and, finally, a model
that combines both characteristics has been developed.

Static features selected

Machine learning models require a diverse set of features
to learn. One of the disadvantages of static features is that
they are susceptible to obfuscation, although in the IoT scen-
ario it is not very common, with around only 3% of the sam-
ples inside the dataset being packed, most of them using Ul-
timate Packer for Executable (UPX) or some variant of it.
This is mainly because, nowadays, malware for Linux-based
systems does not implement techniques to avoid AV or IDS;
with resource-constrainted devices, such as those used in the
IoT infrastructure, there is not enough memory or battery
power to deploy them. Thus, the proposed algorithm firstly
looks for static features that do not change too much between
different platforms. We do not consider features such as as-
sembly code to be a good option since the same sample can
be compiled for different architectures, and the instructions
set for each one is different. This is an important issue be-
cause, as was shown in Table 1, the number of different ar-
chitectures for Linux-based operating systems is large. Al-
though there are several static features that could work well,
such as text strings, we have focused on data based on Cyc-
lomatic Complexity. Cyclomatic complexity [57] is a metric
that is used in software engineering to calculate, in a quant-
itative way, the complexity at the logical level of a program
or function. In our case, we have used the Cyclomatic Com-
plexity of all program functions, as well as the maximum and
average complexity. For example, say a malware sample has
five functions with Cyclomatic Complexities 5, 7, 5, 3 and
5 respectively. We then account for 3 functions with com-
plexity 5, 1 with 7 and 1 with 3. The maximum would be 7
and the average 5. We also use the number of basic blocks
and its average. A basic block consists of a set of instruc-
tions that begins with a single instruction and ends with an
instruction that redirects the execution flow to another basic
block or ends the program. These characteristics allow us to
know whether two programs are structurally similar at the
machine code level. Since there are very few packed sam-
ples and we wish to check whether the use of static features
works well for IoT malware, we have discarded packed sam-
ples from the dataset.

Dynamic features selected
Regarding characteristics based on behavior which are
collected at run time, we have chosen the following features:

e Unique syscalls.

Toctl.

Rename process.
e Number of processes created.
e Check user and group identifier.

These features have mainly been encoded in a binary way
(one or zero), indicating whether they are used (one) or not
(zero). For example, if a process uses the ioctl SIOCGIFH-
WADDR command to obtain the MAC address of an inter-
face, we use the number one to indicate that that sample uses

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 4 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

Architecture Labeled | Not Labeled
ARM 32-bit 445 47
MIPS | 1705 63
AMD x86-64 1600 787
Intel 80386 523 71
PowerPC 1492 49
TOTAL 5765 1017
Table 2

Number of final samples.

that feature. Otherwise, it will contain a zero. The number
of processes created is encoded as a numerical feature.

While dynamic features are extremely useful to charac-
terize the behavior of a program, we note that it is not always
possible to obtain features for all samples. This is because
performing dynamic analysis for certain [oT architectures is
a challenging task [14]. This is due to the problem of man-
aging different virtual machines to emulate a wide range of
architectures. In addition, analyzing malware is a time sens-
itive task as, at the time of execution, C&C infrastructures
or other external resources needed for the execution of the
malware might be unavailable.

Moreover, families that do not contain at least ten sam-
ples have been removed from the dataset because we con-
sider that less than ten samples is not enough for the model
to generalize correctly. Table 2 shows the final sample set
once the families are extracted. Likewise, packed samples
and samples that do not contain dynamic feature are also
filtered out from our analysis.

3.3. Discovery phase

This phase is aimed at characterizing the dataset of sam-
ples that are not labeled. For this, we will use the classi-
fier built in the previous phase. Note that it is not possible
to assess quantitatively whether the predictions made by the
classifier are correct or not (there are no labels). Thus, in
this phase we measure the similarity between predicted sam-
ples and labeled samples as a method to evaluate our ac-
curacy (Section 5). Intuitively, samples that are associated
with a family might be structurally similar to the samples of
that family. This holds true for samples that are not obfus-
cated and thus we see this evaluation criteria as an under-
approximation. It is also important to note that the per-
formance of the classifier is formally evaluated in the pre-
vious phase using k-fold cross-validation, as shown in Sec-
tion 4.1. However, this phase aims at discovering unknown
threats and the similarity metric should be seen as a means
of providing confidence in the decisions of the classifier.

The similarity metric is calculated as follows. First, we
disassemble each executable. Then, we compute the se-
quences of operation codes (opcodes) of size n, namely n-
grams. Listing 1 shows a small example with five assembly
code instructions. For a sequence of n = 3, the resulting set
of three-grams is: (push, mov, push), (mov, push, push) and
(push, push, sub).

I push rbp
> mov rbp, rsp
5 push ri12

4 push rbx
5 sub rsp, 10h

Listing 1: Extracting n-grams

Therefore, given two sets of n-grams, the similarity be-
tween them can be calculated using the Jaccard index [35]
as:

[sq] syl
sl U syl

ey

jacc(sy,) =

where the numerator indicates the number of subsets (de-
noted by |s;| for i € {1,2}) that are found in both samples,
s and s,, and the denominator indicates the total number of
unique subsets between s; and s,. The result is a value be-
tween 0 and 1 that indicates the degree of similarity between
two sets. As mentioned above, the similarity based on n-
grams works well as long as the samples are not obfuscated
or packed. The results for the number of unlabeled samples
that match at the n-gram level with labeled samples, and the
number of hits of the classifier, are presented in Section 5.2.

3.4. Vetting

While the previous phase aims at associating unlabeled
samples with known threats, this phase aims at characteriz-
ing novel threats from our dataset of non-labeled malware.
For this, we cluster samples in the non-labeled set using un-
supervised learning. This clustering process is driven by a
custom distance function that relies on both the features ex-
tracted in phase one (Section 3.2) and the similarity index
from phase two (Section 3.3). This function is formalized as
follows:

Il min(f;',£%)

1 .
i=0 max(fiSl ,f,-sz) X m +JaCC(Sl,S2)

distance(sy, $5) = 3

@

where fl.s1 is the feature i of sample s; (likewise for s,)
and | F| is the total number of features. In other words, we
normalize the feature vectors with respect to all other sam-
ples in our dataset samples. Given two vectors, the simil-
arity index is calculated by means of the average distance
of each pair of features. For example, given a sample with
100 functions and the use of the read, write and execve sy-
scalls, and another sample with 80 functions and the use of
the read, write and open syscalls, we obtain the following
two vectors: (100,1,1,0,1) and (80, 1,1, 1,0). The result-
ing similarity index is 0.56, , which is computed as follows:
((0.8/1+ 1+ 140+ 0)/5). This means that the similarity
between the two sets of features is 56%. Then, we compute
the average between the index of similarity obtained at the
n-gram level (calculated in the previous section) and at the
level of features (Section 3.2).

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 5 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

Feature type Algorithm Features Precision Recall FScore
. 470 80,99 7822 77,27
K Neighbors 220 80,67 78,42 77,38
Static i 470 73,46 80,91 72,53
SVM kernel="rbf 220 7423 8229 73,29
o 470 62,10 56,33 57,00
SVM kernel='Linear 220 5810 5464 5371
Decicion tree 470 82,18 83,44 79,61
220 80,58 83,18 78,85
Random forest 470 83,01 83,67 81,02
220 84,23 84,41 81,70
. 211 86.17 82.08 8246
K Neighbors 134.67 84.79 8142 81.99
Dynamic e 211 83.29 8558 82.38
SVM kernel="rbf 134.67 8228 8650 82.13
L 211 8449 8238 8170
SVM kernel='Linear 134.67 82.09 81.15 80.32
Decicion tree 211 80.06 86.78 81.26
134.67 80.32 8871 8193
Random forest 211 83.28 87.60 84.08
134.67 8272 88.96 83.91
. 631 86.60 83.40 8331
K Neighbors 269.5 86.31 84.43 84.04
Hybrid e 681 88.80 84.17 84.47
SVM kernel="rbf 269.5 88.26 86.07 85.35
L 681 87.92 8539 85.37
SVM kernel='Linear 269.5 83.14 8147 8102
Decicion tree 681 81.36 84.80 80.30
269.5 8231 8353 80.57
Random forest 681 88.08 87.17 86.55
269.5 87.70 86.61 86.07
Table 3

Results for the different types of algorithms and characteristics used in our model.

To cluster samples together, we use the similarity func-
tion in Equation 2. We consider that two samples are in the
same cluster if they have an index higher than 0.8, that is,
if they have a ratio greater than 80%. We chose this empir-
ically after testing different thresholds. A higher threshold
does not produce a notable increase in performance. How-
ever, a lower threshold produces false positives. We also use
this distance function to represent the relationships between
the malware samples in the form of a graph. For the purpose
of our study, we consider that clusters of unlabeled samples
alone constitute a group of samples that belong to a threat
or family that it is currently unknown. Where applicable,
we also connect clusters of unlabeled samples to clusters of
known threats using the threshold described above. This en-
ables us to vet the discovery phase discussed above (see Sec-
tion 3.3). The most interesting clusters are further discussed
in Section 6.

4. Modeling

This section evaluates the effectiveness of the modeling
phase presented in Section 3.2.

4.1. Machine Learning

First, static features have been used to train the model.
Then, dynamic characteristics have also been used and, fi-
nally, all the features have been included. Basically, we have
carried out these experiments with different types of char-
acteristics to understand how much each characteristic con-
tributes to machine learning algorithms. This is because the
automatic extraction of static features is far more efficient
than automatic dynamic analysis, which in the best case can
take several minutes of execution in a sandbox environment,
causing the extraction of features to consume a lot of time.

Then, these same tests have been performed by apply-
ing feature selection to eliminate those features that contrib-
ute least to machine learning algorithms. Different machine
learning algorithms have been used, such as Random Forest
[9, 58], K-nearest [34, 58], Decision Tree [45, 58] and Sup-
port Vector Machines (SVM) [23, 58] using the Radial Basis
Function (RBF) and Linear kernels [58]. The implementa-
tion of these algorithms was provided by the sklearn library
[43], which is written in python.

As a dataset, 5765 samples containing more than 20 dif-
ferent families have been used. K-fold [50] has been per-
formed as a cross-validation strategy with the dataset being
divided into 6 stratified folds, so that there is the same per-

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 6 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

avg_cc I 0,0630

avg_bb I 0,0607
perf_event_open I 0,0489
max_bb I 0,0483
cc_444 I 0,0435

cc_112 | 0,0389 SIOCGIFHWADDR M 0,0144

cc_-4 [0,0350 cc_9 N 0,0123

chroot |l 0,0334 time W 0,0122

umask [0,0288 socket W 0,0122

cc_340 M 0,0244 fdatasync 0 0,0120

readv [l 0,0229 joctl W 0,0119

sysctl [l 0,0204 cc_3 1 0,0106

Istat @ 0,0199 getppid [0,0101

cc_110 M 0,0188 cc_16 1 0,0093

getsockname [l 0,0185 getrlimit | 0,0093

cc_1 M 0,0176
chdir 1 0,0176
cc_289 M 0,0167
wait4 [l 0,0163
cc_241 M 0,0147

Figure 2: Importance of the 30 features that contribute most
value to the Random Forest algorithm.

centage of samples from each family in each split. Feature
selection has been performed for each training split in the
cross validation loop, since the test is considered unseen.

As evaluation metrics, precision, recall and Fscore [12]
have been used. These metrics have been applied to each
class independently, with the final result being the average of
all the classes, that is, each class has the same weight in the
results regardless of the number of samples. Table 3 shows
the results obtained with each of the classifiers. The best
results obtained by the ML algorithms are in bold. It can
be observed that in no case is there much difference in the
use of all the features from the use of a subset of them, and
in some cases it even improves the results when applying
feature selection. In general terms, Random Forest offers
the most balanced results in terms of precision, recall and
FScore. In addition, it can be observed that the use of only
static features does not work very well with SVM.

As mentioned above, the selection of variables produces
similar results in most cases to those when working with
the complete set of characteristics. Figure 2 shows the 30
most representative variables of the random forest (dynamic
+ static) algorithm, that is, those whose influence on the
model is greatest. We can observe that the two character-
istics that most influence this algorithm are the average cyc-
lomatic complexity and the number of basic blocks. Among
the other static characteristics that appear, it is important to
highlight certain cyclomatic complexities of functions that
have a very high value, such as cc_444, cc_340 and cc_289.
Among the features based on its behavior are those related
to syscall sockets, ioctl, perf_event_open, chroot, etc.

Table 3 shows the results obtained for the different al-
gorithms and features used. We can observe that most of
the models yield a performance of around 85% on average.
As we discussed above, the metrics used have been applied
to each class independently. The overall results are sum-
marized using the average, which does not take into account
the size of the class. Here, we observe misclassifications of
families with a small number of samples (e.g., 10 samples),

Confusion matrix

chinaz JEJ 0.00 0.25

oinminer 0.00 [EZJ 000 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00
onsamp {290 000 [0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 000 000 000
Dofioo {000 0.00 0.00 FX¥Y 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ebolachan {000 0,00 0.00 0.00 X34 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Elknot {000 000 0.00 0,00 0.00 R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gafgyt {000 000 0.00 000 000 000 [0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Getshel {0.00 0.00 000 000 0.00 0.00 0.00 F¥¥Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Golad 0.00 000 000 000 0.00 0.00 0.00 0.00 [¥%Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hajime {0.00 0.00 0,00 0.00 0.00 0.00 000 0.00 0.00 FRBY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 000 0.00 0.00 0.00
Itfour {0.00 000 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ircbot {0.00 0.00 0.00 0.00 0.00 0.00 [0:40' 0.00 0.00 0.00 0.00 /40 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00

True label

Lightaidra {000 0.00 0.00 0.00 0.00 0.00 61561 0.00 0.00 0.00 0.00 0.00 [888] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lt 200 200 00 200 200 09 300 00 69 09 25 009 a9 B 09 609 020 609 620 030 620 020 000

Miner {0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0,00 0.00 0.00 0.00 0.00 0.00 0.00

0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.01 0.00 0.00

Mirai
Mrblack {000 0.00 [0/431 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Portscan {0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00

Setag {000 0.00 0,00 0.00 0,00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ¥ 0.00 0.00 0.00 0.0 02
Sotdas {0-00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 M3 0.00 0.00 0.00

Tsunami {0.00 0.00 0.00 0,01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 [XHd 0.00 0.00

Xorddos {0.00 K3 0.00

Znaich {033 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 [XZd

Figure 3: Confusion Matrix of the Random Forest Algorithm
using the hybrid approach.

which brings the average down despite having large classes
(e.g., 2K samples) correctly classified. The confusion mat-
rix in Figure 3 details the percentage of correct and incorrect
labels predicted in each class and provides a more accurate
picture of the classification performance. In particular, as a
representative example, Figure 3 shows the confusion mat-
rix generated for the Random Forest hybrid model. If we
look this matrix, we can see that 25% of the time the chinaz
family is treated as znaich, and 33% of znaich is treated as
chinaz. Actually, this makes sense if we look at it: the name
of the family is very similar, chi-na-z and z-na-ich, and there-
fore it is very likely that it is the same family which is la-
beled differently or that both families have been created by
the same authors. The same case occurs with Mrblack and
Dnsamp: several anti-viruses label these samples as Mrblack
and others as Dnsamp, so both are the same family. In the
case of Ircbot and Lightaidra, some samples could have been
incorrectly labeled. After reviewing the VirusTotal reports
of some samples labeled as Ircbot and Lightaidra, we ob-
served that some anti-viruses mark some of them as Gafgyt
or Mirai. This makes us think that the prediction could be
correct and some of these samples are these kinds of mal-
ware, or that as many of the malware samples in the IoT have
had their source code leaked, there are similar code pieces
in samples from different families, causing the antivirus to
label them incorrectly due to the fact that they can match
with static signatures or on the basis of their heuristics. We
should bear in mind that AVClass labels are determined by
the consensus of the different labels that the AV gives to a
sample.Therefore, the label selected as AVClass may be in-
correct.

4.2. Data visualization

The objective of this section is to visualize the set of
samples using a three-dimensional plane so that we can ob-
serve in a more visual way whether the chosen character-

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 7 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

Gafgyt <« Dofloo Coinminer Mrblack « Setag
v Tsunami » Xorddos Hajime Dnsamp + Unknown
+ Mirai e Miner

30 -30

Figure 4: Visualization of the labeled malware samples with the greatest presence in the dataset and unlabeled samples.

istics allow the generalization of the families that are part
of the dataset. Since the number of features is much higher,
we have used T-Distributed Stochastic Neighbor Embedding
(T-SNE) [36] to reduce the data dimensionality and visual-
ize them correctly. In order to improve the visualization of
the samples and make this clearer, we will only show the
families with the largest number of samples on the chart.

Figure 4 shows the most populated families of the data-
set. We plot the families and their labels together with the
unlabelled samples. Note that it includes samples compiled
for different architectures. We see that our set of features
are representative regardless of the architecture. In general,
samples of a family are close in the plane to other samples of
the same family. For example, the families with the largest
number of samples. We observe that samples from Gafyg,
Mirai and Tsunami are grouped together. We observe also
that there are sub-clusters which are attributed to either set
of samples from the same architecture or to variants within
the family. Intuitively, when we look at families that are less
populated such as Hajime or Dofloo, we observe fewer sub-
clusters. On the other hand, when we look at the representa-
tion of the unknown families, we see that they are very close
to each other and distributed over several clusters. This tells
us that unlabeled samples can be attributed to a handful of
new, but prolific, families.

5. Discovery phase

In this section, we test the classifier with the unknown
set of samples.

5.1. Description

As we mentioned in Section 3.3, this set of samples is not
labeled so we do not have a quantitative way to know whether
the prediction is correct or not. Therefore, we calculate the
level of similarity between unlabeled and labeled samples
and we check how many unlabeled samples are similar at
the n-gram level with labeled samples and whether the label
predicted by the classifier is correct in those samples that
display similarity.

The steps followed to calculate the similarity are the fol-
lowing:

1. Extract the sequences of opcodes from each of the
malware samples and generate the n-grams.

2. Compare each sample of unlabeled malware with the
other samples of that same architecture since each ar-
chitecture has a different set of instructions.

3. Check how many unlabeled samples are related to la-
beled samples.

The n-gram tests have been carried out evaluating differ-
ent values of n (6, 8, 10, 12 and 14). In the case of a small
size of n-gram, a high similarity level might be obtained due
to the fact of having sets with small opcode sequences in
different parts of the program functions, and the fact that the
Jaccard Index only takes into account unique sets of n-grams.
Increasing the n-gram size allows us to match similar sam-
ples in a more reliable way because it is more complicated to
match sequences of, for example, 14 opcodes without there

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 8 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

being any relation. The threshold used to consider that they
are the same sample is 0.8, that is, that the degree of simil-
arity between two samples is greater than 80%. As with the
size of the n-gram, the higher the threshold, the greater the
probability that two samples that exceed that threshold will
be from the same family, that is, the probability of false pos-
itives will be lower. Based on the similarity at the n-gram
level, there are between 126 and 134 (around 12%-13%) un-
labeled samples that are related to samples whose label is
available.

5.2. Evaluation

Once the similarities between unlabeled samples and
others have been obtained, we can test the classifier with
those samples whose label we do not know and verify, in
a quantitative way, how many labels it correctly predicted.
The procedure that has been carried out is the following:

1. We pass the new samples through the different classifi-
ers using both static and dynamic features and feature
selection, obtaining the predicted label for each of the
samples according to the classifiers.

2. For each predicted sample we search with the samples
with similarity higher than 80% calculated previously.
We check those samples that have a label if it matches
the label that the classifier predicts. A threshold of
80% has been chosen so that the samples that exceed it
have a high probability of being from the same family.

Table 4 shows the results obtained for each algorithm
and size of n-gram used. The results are classified by archi-
tecture, indicating how many samples have been predicted
from the totals for that architecture. Also, the hits column
is shown as the total number of hits with respect to the total
number of unlabeled samples that have a relationship with
samples with labels at that n-gram size. Finally, the last
column shows the calculated percentage of success.

If we look at the table in more detail, we can see that
with the ARM, MIPS and PowerPC architectures, almost all
the algorithms come close to correctly predicting almost all
the samples. However, for the AMD x86-64 architecture,
in most cases it correctly predicts nearly 66%. This makes
sense, since it is the CPU architecture that is most widely
used on desktop computers and in many cases the malware’s
source code has been leaked on the Internet, so it may have
been modified, mixed with different malware functionalities,
etc. This produces new variants of the malware which are
created to improve the sample or to try to avoid detection by
antivirus systems. In addition, as it is the architecture that
is most widely used on personal computers, even a simple
port scanner can be classified as malware and fall within the
dataset.

6. Case study

After grouping similar samples together, we next char-
acterize their functionality and study the most relevant thre-
ats as discussed in Section 3.4. For the purpose of this case

study, we use a similarity of 80% or higher when building the
clusters. We chose this threshold empirically after manually
evaluating the resulting clusters. We refer the reader to Sec-
tion 7 for a discussion on the implications behind our choice.
In this section, we report results that are unknown to the
community (i.e., unlabeled samples). Thus, clusters of sam-
ples that are not associated with an unlabeled sample are
not reported. We then describe a number of Linux-based
malware threats targeting the following architectures: AMD,
MIPS, ARM, PowerPC and Intel. Table 5 summarizes the
findings of the unknown samples for each platform.

6.1. AMD x86-64

AMD x86-64 is the architecture with the largest num-
ber of unknown threats as well as the most targeted plat-
form, as shown in Table 2. Figure 5 shows a number of un-
labeled clusters of AMD x86-64 Linux-based malware sam-
ples (depicted in gray) and their relationship with known
threats (a different color per threat). Samples are repres-
ented as nodes of the graph and the edges represent that
two samples are similar. The samples that have labels are
represented by different colors and have some relation with
some unlabeled samples. We observe three distinct patterns:
i) clusters of unlabeled samples alone (clusters #2-#16); ii)
clusters with unknown samples associated with known thre-
ats (unnumbered clusters); and iii) unknown samples that are
not similar to any other sample (i.e., singletons). We next
present a number of case studies characterizing primarily
the most relevant clusters of 1), i.e., unknown clusters alone.
However, we also describe cases where a large number of un-
labeled samples are clustered together with a small number
of labeled samples. While the former are relevant to under-
standing novel threats, the latter can shed some light on why
signatures for “semi-known” are not successfully detecting
all other related threats.

6.1.1. Dropper (clusters #9 and #12)

Our vetting process shows that samples in clusters #9 and
#12 in Fig. 5 have a similar behavior, namely they are both
droppers. In both clusters, all samples contain a payload that
is encrypted and stored in the data section of the executable.
We also observe that the decryption routine is similar. In par-
ticular, they seem to be using the RC4 algorithm or a vari-
ation of it. While these two clusters share a similar back-
bone, they have been grouped in different clusters mainly
because the dynamic features of samples in cluster #9 dif-
fer from those in #12. This indicates that samples in these
two clusters might belong to the same actor (family and/or
botnet), although they participate in different campaigns.

The samples in cluster #12 belong to the largest un-
labeled cluster in our dataset. After deciphering the payload
of the samples in this cluster, we observe an in-memory bash
script that is executed during runtime via the execvp syscall.
A dump of the script is presented in Listing 2. This routine
simply checks whether the target machine has wget or curl
to download a file and prepares for its execution. Also, it
informs the server of the user name of the machine, the IP
address and operating system. At the time of writing, some

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 9 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

Algorithm ngram ARM 32-bit MIPS | AMD x86-64 Intel 80386 PowerPC Hits Percent
K neighbors 6 35/38 18/19 38/60 3/4 11/13 105/134 78,36 %
8 35/37 18/18 38/59 3/4 11/13 105/131 80,15 %
10 35/37 18/18 36/57 3/3 11/13 103/128 80,47 %
12 35/37 18/18 36/57 3/3 10/12 102/127 80,31 %
14 35/37 18/18 36/56 3/3 10/12 102/126 80,95 %
SVM kernel=rbf 6 38/38 19/19 40/60 3/4 12/13 112/134 83,58 %
8 37/37 18/18 40/59 3/4 12/13 110/131 83,97 %
10 37/37 18/18 38/57 3/3 12/13 108/128 84,38 %
12 37/37 18/18 38/57 3/3 11/12 107/127 84,25 %
14 37/37 18/18 38/56 3/3 11/12 107/126 84,92 %
SVM kernel=linear 6 37/38 19/19 39/60 3/4 12/13 110/134 82,09 %
8 37/37 18/18 38/59 3/4 12/13 108/131 82,44 %
10 37/37 18/18 36/57 3/3 12/13 106/128 82,81 %
12 37/37 18/18 36/57 3/3 11/12 105/127 82,68 %
14 37/37 18/18 36/56 3/3 11/12 105/126 83,33 %
Decision Tree 6 37/38 19/19 37/60 3/4 11/13 107/134 79,85 %
8 36/37 18/18 37/59 3/4 11/13 105/131 80,15 %
10 36/37 18/18 37/57 3/3 11/13 105/128 82,03 %
12 36/37 18/18 37/57 3/3 10/12 104/127 81,89 %
14 36/37 18/18 36/56 3/3 10/12 103/126 81,75 %
Random Forest 6 38/38 19/19 41/60 4/4 13/13 115/134 85,82 %
8 37/37 18/18 39/59 4/4 13/13 111/131 84,73 %
10 37/37 18/18 38/57 3/3 13/13 109/128 85,16 %
12 37/37 18/18 38/57 3/3 12/12 108/127 85,04 %
14 37/37 18/18 38/56 3/3 12/12 108/126 85,71 %
Table 4

Predictions of the classifiers with the unlabeled samples that maintain similarities at the
n-gram level with labeled samples.

Arch Type Comments

Script Bash encrypted with RC4 and stored in the data section. Once decrypted,

the script downloads an executable related to cryptomining campaigns.

Flooder Malware used to perform flooding and botnets with flooding capabilities or DDos.
Shellcode and Exploits Dirtycow and some type of privilege elevation exploits.

Malware written in Goland that spreads through SSH services vulnerable to brute

AMD x86-64 Dropper

Goscanssh
force attacks.
Python Embedded Python interpreter. Some python scripts belong to a Drobur malware,
others are benign.
ARM 32 Botnets Known malware such as Mirai and Gagyt.
Exploit Privilege escalation exploits on Android devices.
MIPS | Botnets Known malware such as Mirai, Gafgyt, Remaiten, TheMoon, Dofloo and Dnsamp.
Hacktool Hacking tools such as aircrack or ones to clean the footprints of a system.
Downloader Mirai malware downloader.
PowerPC Botnets Known malware such as Mirai, Gafgyt, Tsunami and Remaiten. Mainly used to perform
DDos attacks.
Exploit/Shellcode Generic shellcodes and exploits.
Intel 80386 Virus ELF File infector known as Vit.
Backdoor Ganiw/Setag family, which executes the commands received by the cybercriminals.
Rex Malware family written in Goland with mining, flooder and brute force capabilities.
Table 5

Summary of the results found in the unknown samples for each of the platforms analyzed.

samples observed in this campaign are active and the in- mining protocol [46]. Pool mining protocols are used to
frastructure still operational. In particular, the executable build a distributed partnership to verify the different PoWs
dropped by the samples of this campaign fetch an AMD- in a block. In this way, the complexity required to check
compatible version of a crypto-mining tool. This tool uses a block is distributed among the participants. Therefore,
CryptoNight Proof-of-Works (PoW) through Stratum, a Pool the set of samples in #12 are droppers that are responsible

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems Page 10 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

@ Gafgyt @ Enoket

@ Hijacker @ Mirai

® Lady

@ Yangji @ Tsunami @ Python/Drobur

@® Rakos (@ Coinminer/Miner

O Golad © Lotoor
@ Dirtycow @ Flood

@® sheima@® Getshell () Dnsamp
@ Scanner® Ebolachan®) Unknown

Figure 5: Unknown AMD x86-64 clusters and their relationship
with known threats.

for downloading and executing custom crypto-mining mal-
ware. The use of CryptoNight PoWs indicates that droppers
are probably part of a larger botnet mining ASIC-resistant
cryptocurrencies [41]. ASIC-resistant mining prevents the
use of dedicated mining hardware. Thus, using [oT malware
to mine can be profitable, especially when mining through a
Pool. Finally, we also observe a few unlabeled samples that
are related to known mining campaigns (c.f., green cluster
in Fig. 5 for a Coinminer campaign).

Listing 2: bash version

#1/bin/bash

if [! —=f "/var/tmp/. "/x] Il [! —=f "/var/tmp/. "/xh] : then
#echo File not present. Installing.
if [—x /usr/bin/wget]; then
wget —dns—timeout 10 ——user—agent="wget" ——connect—timeout 20

——read—timeout 30 —q —-O $mydir/xx.tgz
——header "Host:www. btcsavetheworld.org"
"hxxp://104.24.123.53/ xlatest.tgz" 2> /dev/null >> /dev/null
else
if [—=x /usr/bin/curl]; then
curl —=f —A "curl" ——connect—timeout 10 —qs ——max—time 500
——header 'Host:www.btcsavetheworld.org"'
"hxxp://104.24.123.53/ xlatest.tgz"
—o $mydir/xx.tgz >> /dev/null 2> /dev/null
fi
fi
if [—f Smydir/xx.tgz]; then
mypwd="$(pwd)" 2>/dev/null >> /dev/null
cd $mydir 2>/dev/null >> /dev/null
tar —zxvf xx.tgz 2>/dev/null >> /dev/null
rm —rf xx.tgz 2>/dev/null >> /dev/null
mkdir —p "/var/tmp/. " 2>/dev/null >> /dev/null
mv —f init "$myfile" 2>/dev/null >> /dev/null
myv —f xh "$myfile" 2>/dev/null >> /dev/null
chmod +x "$myfile" "Smyxh" 2>/dev/null >> /dev/null
cd "$mypwd" 2>/dev/null >> /dev/null
#echo File is installed

fi

When looking at samples in #9, we observe that the main
differences lie in the dynamic characteristics, presenting dif-

ferent types of syscalls (e.g., ioctls). This relates to the dif-
ferences in the behavior of the dropped file. Understanding
in detail the characterizing features of the executable files
dropped by this campaign is the aim of our future work.

6.1.2. Flooder (#2, #5, #7, #10, #11, #14, and #15)

The next most relevant threat is structured around
clusters #2, #5, #7, #10, #11, #14, and #15 (see Fig. 5),
and it relates to network flooders. We also found a few un-
labeled samples assigned to clusters largely populated with
samples of known flooders such as: Gafgyt*, Mirai, Tsunami
or Flood. These are tools that are typically used to perform
Distributed Denial of Service (DDoS) attacks. We have vet-
ted most of the samples in these seven unlabeled clusters.
We have observed that all these flooders can be character-
ized into the following groups according to the protocol they
rely on: UDP, SSDP, NTP and Netbios. Similarly to what
we observe with the droppers, some of these variants share a
common backbone. However, in this case the fact that some
clusters share a common backbone does not mean that the
clusters are part of different campaigns from the same actor.
Instead, they have proliferated after the source code of some
of these samples became available [47]. During our ana-
lysis, we have been able to track some characterizing fea-
tures (e.g., strings that are referenced in the disassembly) of
the samples in these clusters to IoT flooders with source code
that it readily available online. This might explain why this
type of threat has proliferated so quickly over the last few
years [4, 31].

6.1.3. Shellcode and Exploits (#4, #6, #8, #13, and
#16)

We have observed a wide range of clusters with malware
that runs shellcode and executes exploits. The most not-
able cluster is #4, which uses an exploit that leverages the
so-called dirtycow vulnerability [17]. This exploit takes ad-
vantage of a race condition in the kernel’s memory manage-
ment system to escalate privileges. We performed a reverse
search between the exploit found in the samples of cluster #4
and exploit-db [20], a popular open-source repository for ex-
ploits. We found that the samples analyzed share code with
one exploit-db entry.

Likewise, samples in clusters #6, #8 and #13 belong to
some type of privilege elevation exploit. The flow of the
logic and the disassembled samples are very similar, but we
did not find any payload that would allow us to characterize
these clusters. There are similar functions (such as “kernel_-
code” or “get_kernel_sym”) in all the samples but they are
not referenced in the programs that we have vetted. We have
not been able to identify any corresponding CVE associated
with the exploit either. These clusters probably correspond
to more sophisticated malware samples than those observed
before.

Finally, cluster #16 is largely related to malware using
shellcode. Contrary to what we observed in the previous

“For instance, Gafgyt (depicted in red in Fig. 5) is a known IoT botnet
that has flooding capabilities.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 11 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

clusters, we find that most of the samples in this cluster are
simple programs. These samples are mainly used to test and
debug the shellcode, where they print the size of the binary
and make a call at the beginning of the code. Typically, this
is used to verify that the code is executed correctly before in-
cluding an exploit in it or distributing it in online forums [42]
or underground markets [1, 54]. Within these samples, there
are several that invoke system functions using a PowerShell
command as an argument. PowerShell has been heavily ab-
used by criminals to easily create cross-platform fileless in-
fections — files that are fetched dynamically and executed
directly in memory [24].

6.1.4. GoScanSSH (#3)

Another prominent cluster is #3, which is also shown in
Fig. 5. Samples in this family are related to the GoScanSSH
family [10]. This family spreads by searching for servers that
are vulnerable to brute force attacks over SSH. The malware
is written in the Go language and all samples are stripped
binaries with layout obfuscation (i.e., no meaningful func-
tion names). However, Go maintains a section called “.gop-
clntab” with a manifest of the functions that might keep the
function names if not properly obfuscated. Despite the bin-
ary being stripped, we were able to map this cluster to the
GoScanSSH family by looking at the “.gopclntab” section.
An analysis of this section of the binary reveals that the sam-
ples in cluster #3 attempt to perform ssh activity, that they
also generate wordlists (typical of dictionary attacks), and
that the malware maintains a blacklist of domains. Judging
by the VirusTotal first seen attribute associated with the sam-
ples in this cluster and the first known report modeling this
threat [10], we are able to tell that some of these samples
have remained undetected for more than a year.

6.1.5. Python and Drobur (#1)

This refers to cluster #1 in Fig. 5. Although the unknown
samples in this cluster are related to several labeled samples,
there is no consensus among the labeled samples. In partic-
ular, some AV vendors label some of these samples as Py-
thon and some others as Drobur. When we go deeper into
analyzing these samples, we verify that they all have an in-
dependent Python executable. Specifically, the executable
has the embedded Python interpreter, as well as its depend-
encies, so that it can be executed without the need of having
Python installed on this architecture. Many IoT platforms
are hardened, and it is thus common to find malware sam-
ples that piggyback all the dependencies needed to set the
scene.

Note that what characterizes the behavior of the samples
is the Python script that is executed in each infection, rather
than the piggybacked tools. This means that although the
distance between these samples might be small, the common
factor is generally the use of the same auxiliary tool. The
fact that they all have the Python interpreter might mean that
these samples belong to the same campaign (e.g., same drop-
per or the same Pay Per Install botnet). However, it could
also be that a given sample is not related to the others at all.

We have randomly chosen several samples and further
analyzed them manually. After extracting the Python byte-
code and reconstructing the original script, we have verified
that some of the samples do not seem to contain harmful
code. Some of them contain the same code as the sample la-
beled as Drobur, which appears to be an IRC bot. However,
two of the samples look benign: one is a dot file editor and
the other is a Taxii Service Connector. This makes us think
that some of the samples detected by some antivirus engines
and, therefore, marked as malicious in VirusTotal, use some
kind of signature that flags any executable with Python em-
bedded.

6.2. MIPS, ARM and PowerPC

We now look at the MIPS, ARM and PowerPC archi-
tectures together. Figure 6 shows the clusters for the dif-
ferent malware samples on the MIPS I architecture. Due to
space constraints, we do not visualize clusters for ARM or
PowerPC. However, unlabeled clusters are structured in a
similar way on ARM and PowerPC to that on MIPS. That
is, there are almost no singletons and most of the unlabeled
samples are connected to a known family.

For MIPS, as discussed in Section 4, we can observe that
Mrblack and Dnsamp are the same sample that has been la-
beled differently by the antivirus engines. For ARM, we can
observe that most of the unlabeled samples are related to Mi-
rai, and on PowerPC with Gafgyt and to a lesser extent with
Mirai.

Finally, we have vetted most of the singletons shown on
these three architectures. In general, these samples seem to
belong to known malware families, corresponding to generic
malware samples. However, we have also seen some sam-
ples piggybacking exploits that we have not seen before, sim-
ilarly to what we saw on AMD x86-64 (see Section 6.1.3).
We also found some malware piggybacking known hacking
tools such as Aircrack’ or a tool to clean fingerprints in a
system.®

6.3. Intel 80386

We next focus on the Intel 80386 architecture. Although
this case study resembles the one in the previous section
(Section 6.2), the main difference here lies in the existence
of a relatively large group that contains only unlabeled sam-
ples. Figure 7 shows the relationship between the unlabeled
samples and known threats. It can be seen that several un-
labeled samples are related mainly to the Setag family and
to the Ganiw family. After further analysis, we observe that
the Ganiw family is also named after Setag by some AVs.
These findings enable us to re-label these new samples and
approach the supervised learning phase in Section 4 with a
better ground-truth quality.

When looking at the unknown samples alone, we first
focus on the larger clusters. The largest cluster belongs to a
family called Vit.4096, which is a virus that has been around

3Suite of tools to assess WiFi network security widely used to crack
WiFi passwords (c.f., https://www.aircrack-ng.org/.)
6UNYUNZ Log Remove & Rename Utility.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 12 of 17

https://www.aircrack-ng.org/

Characterizing Linux-based Malware:
Findings and Recent Trends

e o °
-O%O.QCO

@ Gafgyt @ Mrblack © Dnsamp

(O Themoon @ Hajime

@ Dofloo @ Mirai

© Ircbot (O Unknown

Figure 6: Clusters on the MIPS | architecture.

for over two decades. This virus replicates itself by adding
4096 bytes after the header of other ELFs in the system. The
first reference to the virus dates back to 1996 [26]. However,
signatures for this malware only appear in VirusTotal for the
first time in 2017. In addition to this cluster, there are two
other small clusters of 4 samples, each of which also belongs
to this family. When reversing all these samples, we can con-
firm that they do indeed belong to the Vit family. We note
that there is some small difference in the number of functions
among the samples of different groups. The samples have a
different cyclomatic complexity in some of their functions.
Furthermore, there is a small difference in the overall num-
ber of functions among samples from different clusters. All
the samples have a unique Indicator of Compromise (IoC) —
the string “Vi324.tmp” appears across all the clusters and it
is used as a file name for a temporary file during virus rep-
lication.

When looking at other clusters we find: 1) a Bitcoin Wal-
let Bot; ii) the Rex family [3], which is malware with mining
capabilities that propagates by exploiting wordpress, drupal,
and magento vulnerabilities; iii) flooders; and v) more brute
force attacks on SSH services as well as on telnet services.

Finally, when looking at the singletons we observe mal-
ware carrying several exploits and miscellaneous shellcode.

7. Discussion

Our work is based on the most representative dataset
of Linux-based malware collected by the community to
date [14]. In this section, we first discuss the main lim-
itations of our work. Despite these limitations, our find-

® Gafgyt @ Ddostf @ Setag @ Ganiw @ Unknown

Figure 7: Clusters on the Intel 80386 architecture.

ings provide a fresh understanding of recent trends in Linux-
based malware. In particular, we focus on characterizing
a large number of samples that were unknown to the com-
munity. The set of non-characterized threats constitute 15%
of the samples in [14]. The analysis performed in the discov-
ery phase can help in the modeling of TTPs (Tactics, Tech-
niques and Procedures), which is key in the attribution of
malware. Matching different malware samples may identify
different actors and their TTPs [15], which is very helpful in
supporting incident response teams [53]. To the best of our
knowledge, there is nothing published on malware attribu-
tion issues in IoT environments. Thus, we finally report key
findings derived from vetting the most prevalent threats in
the non-characterized set.

7.1. Threats to Validity

The proliferation of IoT malware is currently bound by
the architecture of the different types of IoT devices. Based
on this, we first describe how this affects the scope of our
analysis and we then discuss the limitations of our system.
Scope. IoT malware targets a wide range of devices [2],
each having a particular architecture. Well-known processor
architectures are MIPS and ARM, but also AMD and In-
tel have recently been competing to provide energy-efficient
chips [6, 39]. On top of the hardware, these devices are
increasingly incorporating additional layers of software to
deliver cross-platform controllers and/or operating systems.
This is the case, for instance, of Arduino Yun’, which runs
Linux on top of an Arduino Leonardo. Another example is

7https ://www.arduino.cc/en/Guide/ArduinoYun

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 13 of 17

https://www.arduino.cc/en/Guide/ArduinoYun

Characterizing Linux-based Malware:
Findings and Recent Trends

Google Brillo®, which has a scrubbed-down version of An-
droid (also Linux-based). Currently, a wide range of the
devices susceptible to being attacked by IoT malware run
a flavour of Linux. Thus, architectures commonly used in
desktop computers can also be targeted by the same mal-
ware and are part of this ecosystem. Likewise, malware de-
veloped for a desktop computer, could easily be re-compiled
to run, for example, on top of a Linux-based ARM device.
In our work, we approximate the analysis of the IoT malware
landscape by focusing mainly on Linux-based malware. In
particular, we look at this threat through the lens of a data-
set collected by Cozzi et al. [14] in 2018. Although this
dataset has been collected to evaluate a malware detection
sandbox tailored to different IoT architectures, we note that
it has been collected using protected malware Threat Intel-
ligence. Thus, we acknowledge that there might be some
multi-purpose malware samples that could also run on desk-
top computers. However, we also note that when the mal-
ware is collected through honeypots, this figure will be very
small or even non-existent.

Limitations. IoT malware is an emerging threat and, there-
fore, does not yet have features as advanced as its prede-
cessors on platforms such as Windows or Android. This
leads to the use of both static characteristics and the use of
disassembler n-gram sequences to perform correctly. In the
near future, we expect to see an increase in the sophistication
of IoT malware with the adoption of obfuscation or packing,
thus hindering static analysis and limiting the visibility of
our system. Another weakness derived from the use of static
features is caused by binaries that are not necessarily mali-
cious and that are embedded in the malware, such as those
that are built with Pylnstaller [52]. Tackling this challenge
might require dedicated techniques similar to those proposed
for dealing with repackaged malware in Android [51]. In our
work, we partly overcome these limitations in two ways: 1)
we first use dynamic analysis to be able to characterize mal-
ware intended to hinder static analysis; and ii) we maintain
a high similarity threshold to avoid clustering samples with
different payloads but which piggyback the same library.

7.2. Key-findings

Our system builds a guided system to better characterize
unknown threats in [oT malware. We next describe the main
trends, focusing on those obtained from previously unknown
threats.
Trends. We found that crypto-mining malware is targeting
IoT platforms. This provides cybercriminals with an infra-
structure connected 24 hours a day that allows them to mine
cryptocurrencies in a distributed manner and obtain profits
without investing in hardware or paying the electricity bill.
Originally, the malware aimed at IoT platforms had the main
purpose of creating a network of bots to perform denial of
service attacks or to make money by selling access to a net-
work of bots on the black market (Botnet-as-a-service) [48].
Nowadays, this is changing and cybercriminals are taking
advantage of the resources of the infected devices. These

8Code-named Android Things https://developer.android.com/things

stolen resources are currently used to mine cryptocurrencies
and, therefore, obtain a greater economic benefit [42]. The
study of the trends in malware targeting IoT devices could
help develop forensic tools and methodologies tailored to
such threats. This is because the characterization of IoT mal-
ware can lead to the discovery of evidence that can change
the course of an investigation (i.e., increasing the percentage
of CPU usage or battery consumption as evidence of infec-
tion by ransomware or crypto-mining malware [5]). Thus,
the analysis performed can put forensic analysts in an ad-
vantaged position in the prosecution of criminals using the
Trojan Horse Defense.

Sophistication. We have observed that the level of soph-
istication of IoT malware varies considerably. While there is
certainly a large number of families with little sophistication,
we are increasingly seeing more complex malware families
(e.g., droppers and exploits, as reported in Sections 6.1.1
and 6.1.3, respectively). This is supported by recent com-
mercial reports, such as the one in [33], which provide an-
ecdotal evidence of this phenomenon.

Infrastructure. We also found that samples in a wide range
of clusters rely on publicly available repositories such as
exploit-db and GitHub (flooderscode) to manufacture new
variants of malware. For example, the code of some of the
most widespread botnets is available on the Internet [18],
such as Mirai, Bashlite (Gafgyt), or pnscan. This encourages
the development of novel samples that simply reuse part of
the available code. This leads to the rapid proliferation of
new variants with little investment and high economic re-
turns.

8. Related work

Celeda et al. [11] present an analysis of the Chuck Nor-
ris malware, which they discovered due to the growth of port
23 scanners in their networks. The authors prepared a vul-
nerable device for the botnet and monitored all the network
connections that were generated in that device for the pur-
pose of an exhaustive analysis of the botnet.

Bohio [7] performs a technical analysis of the Dofloo
malware, using static and dynamic code analysis. It details
the commands supported by the malware as well as the com-
munication mechanisms with the C&C. It also proposes a
network traffic detection signature for Snort as well as com-
mitment indicators to detect malware in a compromised sys-
tem.

Wang et al. [56] distinguish two main infection methods
for malware that is focused on IoT platforms. The authors
use Mirai as an example of malware that uses brute force to
infect devices, and Bashlite and Darlloz as examples to ana-
lyze malware that exploits vulnerabilities for its propagation.

In [30] the authors carry out a review of the state of the
art of botnets, analyzing the techniques used by the Mirai
and Hajime botnets. Finally, they propose countermeasures
for the detection of these botnets.

In [4] a complete study on the Mirai botnet is presented in
which the authors analyze its evolution, before and after the
release of its source code. They describe the main devices

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 14 of 17

https://developer.android.com/things

Characterizing Linux-based Malware:
Findings and Recent Trends

affected and the different types of attacks that the botnet car-
ries out, as well as the targets which it is aimed at. Finally,
as a case study, they analyze attacks on three Mirai victims.

Edwards et al. [19] perform a complete analysis of the
Hajime botnet, detailing everything from the recognition and
infection phase of new victims to the format of custom files
used to store the configuration and payload. In addition, they
describe the types of messages that Hajime supports. Fi-
nally, they provide countermeasures for detecting the botnet.

Herwig et al. [25] perform a study of the Hajime botnet
from different points of view, such as the geographical loc-
ations of the infected devices and the types of devices. In
their study, they also analyze the size of the botnet and the
churn rates, as well as the TR-064 vulnerability that Hajime
exploits by analyzing the queries collected from a DNS root
server.

De Donno et al. [16] perform a study on the state of
the art of malware in the IoT, presenting a classification of
DDoS attacks according to different features such as the bot-
net architecture, protocol, scanning strategy, etc. They also
present a description of the main families of botnets in the
IoT and the relationships between them, showing the types
of DDoS attacks that each one is capable of performing, the
CPU architectures that support them and the DDoS archi-
tecture of the botnet. Finally, they present an analysis of the
Mirai botnet.

In [14], the authors present the details of a platform they
have developed that is focused on malware analysis based on
Linux. Their platform supports the main target architectures
of current IoT malware. In addition, they describe in detail
different techniques used by the malware in Linux as well as
the statistics of how many of the samples out of the total that
comprised their study implement these techniques.

In [13], a study on malware in the IoT and its families is
presented, summarizing the size of botnets as well as the es-
timated time they remain active. It also includes an analysis
of the rules for IDS and the time window from when the mal-
ware appeared until the first rules appeared. In addition, they
present a series of errors and inconsistencies found in their
studies as well as the ambiguity of vulnerability references,
analysis information, etc. Finally, they present a framework
for analyzing malware dynamically that is based on the open
source tool Cuckoo Box [22].

Cosa Nostra is a toolkit for clustering malware created
by Joxean Koret [32]. The tool generates a call graph signa-
ture for each sample of malware analyzed using the complex
cyclomatic of all the functions and assigning a prime number
to that cyclomatic complexity. Finally, it generates a hash
based on the multiplication of those prime numbers. When
two hashes are equal it is considered that the samples are
structurally equal, and if they are different, it breaks down
the hash into its prime factors to determine how much they
differ from each other. It allows the creation of phylogenetic
trees of malware samples that are structurally similar. This
can be visualized in a Web GUL

Isawa et al. [29] propose the use of static features to com-
pute the similarity between samples of IoT malware, since

the extraction of static features consumes less time than ob-
taining characteristics based on their behavior. For their ex-
periments, they build similarity matrices based on the use of
n-grams for both disassembled code and system call traces.
Finally, they visualize these matrices, verifying that the use
of disassembled code works well for the classification of
malware in the IoT.

Nguyen et al. [40] compare three approaches for
malware detection using Convolutional Neural Networks
(CNN). The first is based on fixed-size byte sequences, the
second uses fixed-size color images, and the third assem-
bler instruction sequences of variable size. Their tests are
performed on 1000 samples of malware and 1000 goodware
samples for the x86 architecture, showing by their experi-
mental results that the approaches based on CNN work well
in the detection of malware in the IoT.

9. Conclusions

In this paper we have presented a study of malware that
targets IoT platforms. Through data analysis, we extracted
static and dynamic features to systematically characterize
malware into different threats. The proposed methodology
allows the identification of new malware samples and the
relationships they maintain with previous ones. Our evalu-
ation over a dataset of labeled samples shows that our system
can accurately perform this task.

Our methodology allows the extraction of knowledge
about large groups of connected samples by analyzing some
of their samples and extrapolating the results obtained. We
have used this to investigate a number of unlabeled malware
samples found in the wild. Where applicable, we have asso-
ciated unknown clusters with known threats. This showed
that the current detection mechanisms deployed by commer-
cial AntiVirus systems are behind in the arms race. We have
also gone one step further and studied each of the unknown
clusters by using state-of-the-art reverse engineering tech-
niques and our expertise as malware analysts. In this way,
we were able to verify that the relationship formed by sam-
ples from the same group was correct, identifying the groups
with the highest number of samples. We have also provided
an in-depth analysis of what the most recent unknown trends
are. We have shown, for instance, that crypto-mining mal-
ware is currently attacking the IoT infrastructure. Our hope
is that this characterization will help the community to de-
vise better detection strategies against these specific threats.
Finally, in order to foster the development of these strategies,
we have released the characterization we have produced for
each of the clusters.

Acknowledgments

This work has been supported by the MINECO and Eu-
ropean Commission (FEDER funds) under project RTT12018-
098156-B-C52, by the JCCM under the project SB-PLY/17/-
180501/000353 and by the Spanish Education, Culture and
Sports Ministry under grant FPU 17/03105.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 15 of 17

Characterizing Linux-based Malware:
Findings and Recent Trends

References

(1]

[2]

(3]

[4]

[5]

[6]

[7]
[8]
[9]
(10]

[11]

[12]
(13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]
[21]
[22]

(23]

[24]

Allodi, L., 2017. Economic factors of vulnerability trade and exploita-
tion, in: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, ACM. pp. 1483-1499.

Ammar, M., Russello, G., Crispo, B., 2018. Internet of things: A sur-
vey on the security of iot frameworks. Journal of Information Security
and Applications 38, 8-27.

Ancel, B., 2016. From website-locker to ddos: Rex!
URL: https://thisissecurity.stormshield.com/2016/08/17/
from-website-locker-to-ddos-rex/.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis,
M., et al., 2017. Understanding the mirai botnet, in: 26th {USENIX}
Security Symposium ({USENIX} Security 17), pp. 1093-1110.
Azmoodeh, A., Dehghantanha, A., Conti, M., Choo, K.K.R., 2018.
Detecting crypto-ransomware in iot networks based on energy con-
sumption footprint. Journal of Ambient Intelligence and Human-
ized Computing 9, 1141-1152. URL: https://doi.org/10.1007/
$12652-017-0558-5, d0i:10.1007/s12652-017-0558-5.

Blem, E., Menon, J., Sankaralingam, K., 2013. Power struggles: Re-
visiting the risc vs. cisc debate on contemporary arm and x86 archi-
tectures, in: 2013 IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA), IEEE. pp. 1-12.

Bohio, M., 2015. Analyzing a backdoor/bot for the mips platform.
SANS Institute, Tech. Rep. .

Bowles, S., Hernandez-Castro, J., 2015. The first 10 years of the trojan
horse defence. Computer Fraud & Security 2015, 5-13.

Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Brumaghin, E., Williams, A., Zidouemba., A., 2018. Forgot about
default accounts? no worries, goscanssh didnaAZt. URL: https://
blog.talosintelligence.com/2018/03/goscanssh-analysis.html.
Celeda, P., Krejci, R., Vykopal, J., Drasar, M., 2010. Embedded
malware-an analysis of the chuck norris botnet, in: 2010 European
Conference on Computer Network Defense, IEEE. pp. 3—10.

Chen, Y.W,, Lin, C.J., 2006. Combining SVMs with various feature
selection strategies, in: Feature extraction. Springer, pp. 315-324.
Costin, A., Zaddach, J., 2018. Iot malware: Comprehensive survey,
analysis framework and case studies. BlackHat USA .

Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D., 2018. Under-
standing linux malware, in: 2018 IEEE Symposium on Security and
Privacy (SP), pp. 161-175. doi:10.1109/SP.2018.00054.

Davis II, J.S., Boudreaux, B., Welburn, J.W., Aguirre, J., Ogletree,
C., McGovern, G., Chase, M.S., 2017. Stateless Attribution. RAND
Corporation.

De Donno, M., Dragoni, N., Giaretta, A., Spognardi, A., 2018. Ddos-
capable iot malwares: Comparative analysis and mirai investigation.
Security and Communication Networks 2018.

Details, C., . CVE-2016-5195. URL: https://www.cvedetails.com/
cve/CVE-2016-5195/.
Ding, F., . Tot-malware. URL: https://github.com/ifding/

iot-malware.

Edwards, S., ioannis Profetis, 2016. Hajime:
decentralized internet worm fot IoT devices. Technical Re-
port. URL: https://security.rapiditynetworks.com/publications/
2016-10-16/hajime.pdf.

FireFart, 2016. Linux Kernel 2.6.22 < 3.9 - 'Dirty COW’. URL:
https://www.exploit-db.com/exploits/40839.

Gartner, 2015. Gartner says 6.4 billion connected., in: Retrieved Feb-
ruary, 2019 from http://www.gartner.com/newsroom/id/3165317.
Guarnieri, C., . Cuckoo Sandbox - Automated Malware Analysis.
URL: https://cuckoosandbox.org/.

Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998.
Support vector machines. IEEE Intelligent Systems and their Applic-
ations 13, 18-28. doi:10.1109/5254.708428.

Hendler, D., Kels, S., Rubin, A., 2018. Detecting malicious power-
shell commands using deep neural networks, in: Proceedings of the
2018 on Asia Conference on Computer and Communications Secur-
ity, ACM. pp. 187-197.

Analysis of a

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Herwig, S., Harvey, K., Hughey, G., Roberts, R., Levin, D.,
2019. Measurement and analysis of hajime, a peer-to-peer iot bot-
net. Network and Distributed System Security (NDSS) Symposium
URL: https://www.ndss-symposium.org/wp-content/uploads/2019/02/
ndss2019_02B-3_Herwig_paper.pdf, doi:10.14722/ndss.2019.23488.
Hispasec, . Virus para linux. URL: https://unaaldia.hispasec.com/
1999/02/virus-para-linux.html.

Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M., 2018. Current
Advances, Trends and Challenges of Machine Learning and Know-
ledge Extraction: From Machine Learning to Explainable Al, in:
Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (Eds.), Machine
Learning and Knowledge Extraction, Springer International Publish-
ing, Cham. pp. 1-8. doi:10.1007/978-3-319-99746-7_1.

Hurier, M., Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y., 2016.
On the lack of consensus in anti-virus decisions: Metrics and insights
on building ground truths of android malware, in: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer. pp. 142-162.

Isawa, R., Ban, T., Tie, Y., Yoshioka, K., Inoue, D., 2018. Evaluating
disassembly-code based similarity between iot malware samples, in:
2018 13th Asia Joint Conference on Information Security (AsiaJCIS),
pp. 89-94. doi:10.1109/AsiaJCIS.2018.00023.

Kambourakis, G., Kolias, C., Stavrou, A., 2017. The mirai botnet
and the iot zombie armies, in: MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), pp. 267-272. doi:10.1109/
MILCOM.2017.8170867.

Kolias, C., Kambourakis, G., Stavrou, A., Voas, J., 2017. Ddos in the
iot: Mirai and other botnets. Computer 50, 80-84.

Koret, J., . Cosa nostra. URL: https://github.com/joxeankoret/
cosa-nostra.

Kroustek, J., Iliushin, V., Shirokova, A., Neduchal, J., Hron, M., .
Torii botnet - not another mirai variant. URL: https://blog.avast.
com/new-torii-botnet-threat-research.

Laaksonen, J., Oja, E., 1996. Classification with learning k-nearest
neighbors, in: Proceedings of International Conference on Neural
Networks (ICNN’96), pp. 1480-1483 vol.3. doi:10.1109/ICNN.1996.
549118.

Leskovec, J., Rajaraman, A., Ullman, J.D., 2014. Mining of massive
datasets. Cambridge university press.

Maaten, L.v.d., Hinton, G., 2008. Visualizing Data using t-SNE.
Journal of Machine Learning Research 9, 2579-2605. URL: http:
//www. jmlr.org/papers/v9/vandermaaten@8a.html.

Marturana, F., Tacconi, S., 2013. A machine learning-based triage
methodology for automated categorization of digital media. Digital
Investigation 10, 193-204.

Mikhail Kuzin, Yaroslav Shmelev, V.K., 2018. New trends in the
world of iot threats. Available Online.

Nakhkash, M.R., Gia, T.N., Azimi, 1., Anzanpour, A., Rahmani,
AM,, Liljeberg, P., 2019. Analysis of performance and energy con-
sumption of wearable devices and mobile gateways in iot applications.
Nguyen, K.D.T., Tuan, TM., Le, S.H., Viet, A.P., Ogawa, M.,
Le Minh, N., 2018. Comparison of three deep learning-based ap-
proaches for iot malware detection, in: 2018 10th International Con-
ference on Knowledge and Systems Engineering (KSE), IEEE. pp.
382-388.

Pastrana, S., Suarez-Tangil, G., 2019. A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth. arXiv preprint
arXiv:1901.00846 .

Pastrana, S., Thomas, D.R., Hutchings, A., Clayton, R., 2018.
Crimebb: Enabling cybercrime research on underground forums at
scale, in: Proceedings of the 2018 World Wide Web Conference on
World Wide Web, International World Wide Web Conferences Steer-
ing Committee. pp. 1845-1854.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E., 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, 2825-2830.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 16 of 17

https://thisissecurity.stormshield.com/2016/08/17/from-website-locker-to-ddos-rex/
https://thisissecurity.stormshield.com/2016/08/17/from-website-locker-to-ddos-rex/
https://doi.org/10.1007/s12652-017-0558-5
https://doi.org/10.1007/s12652-017-0558-5
http://dx.doi.org/10.1007/s12652-017-0558-5
https://blog.talosintelligence.com/2018/03/goscanssh-analysis.html
https://blog.talosintelligence.com/2018/03/goscanssh-analysis.html
http://dx.doi.org/10.1109/SP.2018.00054
https://www.cvedetails.com/cve/CVE-2016-5195/
https://www.cvedetails.com/cve/CVE-2016-5195/
https://github.com/ifding/iot-malware
https://github.com/ifding/iot-malware
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://www.exploit-db.com/exploits/40839
https://cuckoosandbox.org/
http://dx.doi.org/10.1109/5254.708428
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_02B-3_Herwig_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_02B-3_Herwig_paper.pdf
http://dx.doi.org/10.14722/ndss.2019.23488
https://unaaldia.hispasec.com/1999/02/virus-para-linux.html
https://unaaldia.hispasec.com/1999/02/virus-para-linux.html
http://dx.doi.org/10.1007/978-3-319-99740-7_1
http://dx.doi.org/10.1109/AsiaJCIS.2018.00023
http://dx.doi.org/10.1109/MILCOM.2017.8170867
http://dx.doi.org/10.1109/MILCOM.2017.8170867
https://github.com/joxeankoret/cosa-nostra
https://github.com/joxeankoret/cosa-nostra
https://blog.avast.com/new-torii-botnet-threat-research
https://blog.avast.com/new-torii-botnet-threat-research
http://dx.doi.org/10.1109/ICNN.1996.549118
http://dx.doi.org/10.1109/ICNN.1996.549118
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

Characterizing Linux-based Malware:
Findings and Recent Trends

Quick, D., Choo, K.K.R., 2014. Impacts of increasing volume of
digital forensic data: A survey and future research challenges. Digital
Investigation 11, 273-294.

Quinlan, J.R., 2014. C4.5: Programs for Machine Learning. Elsevier.
Google-Books-ID: b3ujBQAAQBAJ.

Recabarren, R., Carbunar, B., 2017. Hardening stratum, the bitcoin
pool mining protocol. Proceedings on Privacy Enhancing Technolo-
gies 2017, 57-74.

ring04h, . ring04h/WebTerror. URL: https://github.com/ring04h/
WebTerror.

Seals, T., . Themoon rises again, with a botnet-as-a-service
threat. URL: https://threatpost.com/themoon-botnet-as-a-service/
141393/.

Sebastian, M., Rivera, R., Kotzias, P., Caballero, J., 2016. Avclass:
A tool for massive malware labeling, in: Monrose, F., Dacier, M.,
Blanc, G., Garcia-Alfaro, J. (Eds.), Research in Attacks, Intrusions,
and Defenses, Springer International Publishing, Cham. pp. 230-253.
Stone, M., 1974. Cross-Validatory Choice and Assessment of Stat-
istical Predictions. Journal of the Royal Statistical Society. Series B
(Methodological) 36, 111-147. URL: https://waw. jstor.org/stable/
2984809.

Suarez-Tangil, G., Stringhini, G., 2018. Eight years of rider meas-
urement in the android malware ecosystem: evolution and lessons
learned. arXiv preprint arXiv:1801.08115 .

Team, P.D., . Pyinstaller quickstart — pyinstaller bundles python ap-
plications. URL: https://www.pyinstaller.org/.

Tounsi, W., Rais, H., 2018. A survey on technical threat intelligence
in the age of sophisticated cyber attacks. Computers & security 72,
212-233.

Van Wegberg, R., Tajalizadehkhoob, S., Soska, K., Akyazi, U.,
Ganan, C.H., Klievink, B., Christin, N., Van Eeten, M., 2018. Plug
and prey? measuring the commoditization of cybercrime via on-
line anonymous markets, in: 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 1009-1026.
Virus Total, . https://www.virustotal.com.
February-2019].

Wang, A, Liang, R., Liu, X., Zhang, Y., Chen, K., Li, J., 2017. An
inside look at iot malware, in: International Conference on Industrial
IoT Technologies and Applications, Springer. pp. 176—186.

Watson, A.H., Wallace, D.R., McCabe, T.J., 1996. Structured test-
ing: A testing methodology using the cyclomatic complexity metric.
volume 500. US Department of Commerce, Technology Administra-
tion, National Institute of 4Ae.

Witten, I.H., Frank, E., Hall, M.A., 201 1. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann Publishers
Inc., Burlington, MA.

[Online; accessed

Javier Carrillo Mondéjar received a BSc
degree in Computer Science and a Master’s
degree in Advanced Computer Science from
the University of Castilla-La Mancha, Spain,
in 2016 and 2017, respectively. Currently,
he is enrolled full-time on the PhD Program
in Advanced Information Technology at this
university. In 2016, he joined the Computer
Architecture and Technology Group of the
Informatics Research Institute of Albacete
(I3A) as a researcher. His research interests
are related to malware detection and classification techniques, as well as
the methods used in malware to spread and remain hidden in computer
systems. He has also been a visiting researcher at King’s College London.

José Luis Martinez received his M.Sc.
and Ph.D. degrees in Computer Science
and Engineering from the University of
Castilla-La Mancha (Spain) in 2007 and
2009, respectively. In 2005, he joined the
Department of Computer Engineering at the
University of Castilla-La Mancha, where he
was a researcher in the Computer Architec-
ture and Technology group at the Albacete
Research Institute of Informatics (I3A). In
2010, he joined the department of Computer
Architecture at the Complutense University
in Madrid, where he was an assistant lecturer. In 2011, he rejoined the
Department of Computer Engineering of the University of Castilla-La
Mancha, where he is currently a lecturer. His research interests include
video coding and transcoding, and topics related to security. He has also
been a visiting researcher at the Florida Atlantic University, Boca Raton
(USA) and the Centre for Communication System Research (CCSR), at
the University of Surrey, Guildford (UK). He has over 100 publications
in these areas in international refereed journals and conference proceedings.

Guillermo Suarez-Tangil is a lecturer at
King’s College London (KCL). His research
focuses on systems security and malware ana-
lysis and detection. In particular, his area of
expertise lies in the study of smart malware,
ranging from the detection of advanced obfus-
cated malware to automated analysis of tar-
geted malware. Before joining KCL, he was
senior research associate at University College
London (UCL), where he was also actively in-
volved in other research areas involved with detecting and preventing Mass-
Marketing Fraud.

J. Carrillo-Mondéjar et al.: Preprint submitted to Future Generation Computer Systems

Page 17 of 17

https://github.com/ring04h/WebTerror
https://github.com/ring04h/WebTerror
https://threatpost.com/themoon-botnet-as-a-service/141393/
https://threatpost.com/themoon-botnet-as-a-service/141393/
https://www.jstor.org/stable/2984809
https://www.jstor.org/stable/2984809
https://www.pyinstaller.org/

