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Abstract—The increasing number of Android malware forced
antivirus (AV) companies to rely on automated classification
techniques to determine the family and class of suspicious
samples. The research community relies heavily on such labels
to carry out prevalence studies of the threat ecosystem and to
build datasets that are used to validate and benchmark novel
detection and classification methods. In this work, we carry
out an extensive study of the Android malware ecosystem by
surveying whitepapers and reports from 6 keyplayers in the
industry as well as 81 papers from 8 top security conferences
to understand how malware datasets are used by both. We,
then, explore the limitations associated with the use of available
malware classification services, namely VirusTotal (VT) engines,
for determining the family of an Android sample. Using a
dataset of 2.47M Android malware samples1, we find that the
detection coverage of VT’s AVs is generally very low, that the
percentage of samples flagged by any 2 AV engines does not go
beyond 52%, and that common families between any pair of
AV engines is at best 29%. We rely on clustering to determine
the extent to which different AV engine pairs agree upon which
samples belong to the same family (regardless of the actual
family name), and find that there are discrepancies that can
introduce noise in automatic label unification schemes. We also
observe the usage of generic labels and inconsistencies within
the labels of top AV engines, suggesting that their efforts are
directed towards accurate detection rather than classification.
Our results contribute to a better understanding of the limitations
of using Android malware family labels as supplied by common
AV engines.

Index Terms—Android, malware, classification, family, Virus-
Total, Antivirus, clustering, labels

I. INTRODUCTION

With more than 2.8B active users worldwide, Android is
now the most used OS on mobile devices [1]. In a similar
manner, Android has become the top target OS for smartphone
malware. In the early days of the platform, between October
2010 and October 2012, Kaspersky reported an increase of
incoming Android malware from less than 1K to more than
40K [2]. By March 2020, the influx of new malware reached
480K [3]. Thus, since the beginnings of the platform, Antivirus
companies (AVs hereafter) developed threat intelligence solu-
tions to protect Android users from malware [4]–[6]. Because
of the limited number of detected malware samples early on,
human analysts were able to study samples, identify their

1https://github.com/mra12/labelingDataset

behavior and label them following an internal scheme of the
AV company, most likely including the platform, type and
family of the sample (see section V-B). However, such a
surge made it inevitable for AVs to use automation techniques
in both detection and family classification because of the
impossibility of manually handling the influx of samples
arriving to AVs [7]. Gheorghescu, a researcher at Microsoft’s
Security unit (as indicated in the affiliation), introduced his
automatic family classification system and indicated, in 2005,
that his technique was not generally adopted by the industry
[8]. We note that Microsoft®, though not an AV company
itself, is a major key player in the AV industry [9]. The
research community has long relied on labeled datasets to
carry out studies on the prevalence and evolution of Android
malware, or to validate novel detection and classification
methods. While the authors of the Android Malware Genome
Project’s dataset (Malgenome hereafter) – possibly the earliest
academic Android malware dataset – analyzed each sample
manually to identify its behaviors and families [10], manual
analysis is the exception nowadays in this area. Most works
in this area (e.g. [11]–[23]) have relied on VirusTotal (VT) to
build their datasets by using the labels that VT engines gave
to each sample. It is well known, however, that AVs tend to
focus their resources towards accurate detection rather than
classification. This implies that many suspicious samples are
labeled with generic labels rather than with more identifying
ones. As a result, the class and family of the sample are often
vague, as we show in Section V-C. In addition, as each AV has
its own methodology, determining if a given sample belongs to
a certain class or family might differ from one AV to another.
While these issues apply to all forms of malware, they are
especially acute in the case of Android. That is because there is
less expertise in the industry with regards to Android malware
due to the novelty of the platform, unlike desktop malware
which has been studied for decades by both the industry and
the scientific community.

To build large labeled datasets, many researchers rely on a
two-step process: 1) Scanning samples/hashes on VT, and 2)
Using tools for unifying labels of samples, such as AVCLASS
[24] and Euphony [18]. While this process might not seem
problematic at the first glance, using such tools can very easily
introduce noise in the dataset building process silently if the



underlying AV engines do not provide coherent family labels.
The problem lies in that 23% of security research works relied
on AV results as ground truth for either malware detection or
malware family classification [25]. It is only natural to assume
that this reliance extends to Android security related works.
On a related note, Perdisci et al. [26] addressed the flawness
of using majority voting, which label unifying tools like
AVCLASS rely on, and proposed an alternative technique so as
to establish a better ground-truth that does not discard the non-
selected labels of majority voting. The so-called ”consensus”
between AVs in label unifying tools gives a false sense to
the researcher of an established ground-truth for their dataset
even though such consensus only covered 20% of the samples
as reported by Bayer et al. [27]. Such homogeneous datasets
would not represent the distribution of malware seen in the
wild.

In this paper, we shed light on the limitations associated
with using VT’s malware classification services to determine
the family of Android malware samples. Knowing these lim-
itations is critical for researchers when building a labeled
dataset as it will act as their ground truth/reference when
analyzing the threat landscape or when training classifiers.
Our study shows that researchers heavily rely on VT labels
in creating their Android malware datasets and demonstrates
that each of the AV industry’s big players that we studied
(almost all are in the list of VT engines) has a limited view
of the threat ecosystem, which leads to label discrepancies
amongst them. Indeed, we are able to confirm this cause of
label discrepancies by showing the high disagreement level
between the VT engines from the results of our measurement
experiments, which show a maximum of 64% of single AV
coverage (how many samples an engine flags as non-benign)
and 52% for AV pair coverage. In a similar fashion, we find
that the best agreement level between AV pairs for samples
whose family name could be identified by AVCLASS2 [28]
does not go beyond 29%. Overall, our study aims at helping
researchers understand the limitations of using VT along with
label unification tools in Android malware classification, and
taking additional precautions when using them instead of
relying on them blindly. Our contributions are summarized
in the following:

• We study the historical malware family classification
methods, and those of Android. We compare the latter to
the industry’s practice of Android malware classification.

• We perform an exhaustive study of the industry’s Android
malware labeling phenomenon between 2012 and 2020
by analyzing reports of several AV vendors. We do the
same in academia by studying relevant papers from top
security conferences between 2011 and 2020. To the best
of our knowledge, we are the first to do so.

• We analyze 2.47M Android malware samples using VT
and calculate the coverage of single AVs as well as
between each AV pair of the top 10 AVs in coverage.

• We study the prevalence of the usage of generic labels
and uncover several inconsistencies within the labels of

each of the top 10 AVs in coverage.
• Using the Rand index metric, we determine the level of

agreement on family and class between each AV pair in
the top 10 AVs.

The rest of the paper is organized as follows: In Section
II, we provide background on malware family classification
methods as well as the industry practices in this context. In
Section III, we study how both the industry and the research
community use malware family labels. Then, in Section IV ,
we introduce the dataset we use for the measurement and de-
scribe our coverage analysis. Section V addresses the labeling
problem, its challenges and our findings when scanning our
dataset on VT. Section VI explains our experiments that mea-
sured family and class coherence across different AVs. Section
VII provides constructive discussion on the key takeaways of
our work, our recommendations and the limitations. Finally,
we discuss related work in Section VIII, while Section IX
concludes the paper and provides details on possible future
work.

II. ANDROID MALWARE CLASSIFICATION

This section provides necessary background on the prob-
lem of classifying malware into families, with emphasis
on approaches—both academic proposals and industry-based
systems—that target samples for the Android platform.

A. Malware Classification

The problem of classifying malware into families has tra-
ditionally been approached from a statistical learning [29]
as well as other perspectives, using both unsupervised and
supervised learning methods. Unsupervised Learning is used
with unlabeled datasets, where no previous knowledge of
the sample’s family exists. On the other hand, Supervised
Learning requires a labeled dataset, which is split into training
and testing sets. We next provide examples of highly cited
works that focused on Unsupervised Learning, Supervised
Learning or both together. We do not consider the use of
Unsupervised Learning in dimensionality reduction as use of
both together, but rather only take into account the usage of
both in determining the family.

1) Unsupervised Learning: While clustering is not the
only existing approach in Unsupervised Learning [30], it is
used extensively in the context of malware analysis. For
instance, Bayer et al. [27] proposed a clustering approach
for Portable Executable (PE) malware based on a scalable
dynamic analysis. The system which leveraged data tainting
to identify dependencies between system calls was capable of
analyzing 75K samples in less than 3 hours.

Bailey et al. [31] built a behavioral clustering-based clas-
sification system that executes samples in a sandbox and
extracts the fingerprint from system state changes as they are
more invariant than abstract code sequences. They compared
their results to several AVs to identify the limitations of the
AVs. AVs at that time mainly used signature-based techniques,
which surely failed against unseen/new malware.



With the goal of having an automatic classification approach
to help analysts deal with the growing number of malware
samples, the authors of [32] introduced a system based on Call
Graph (CG) clustering. Representing malicious samples as CG
allows identifying structural similarity while allowing some
degree of variation. They used Graph Edit Distance (GED) to
calculate the distance between any two CG’s; CG’s were based
on local and external functions. They then used the distance
to identify if a sample belonged to any cluster.

2) Supervised Learning: The authors of [33] designed a
(Machine Learning) ML system which extracts complementary
statistical features related to the structure of PE files. These
features are extracted from both the hex dump and disassem-
bled code and include information like the file size, frequencies
of: a) opcodes, b) common APIs, c) special characters, d)
keywords and e) register use, entropy statistical measurements
and histograms of strings. The small size of the set of features
allows for the system’s scalability. The system is able to
identify the family even for packed samples. It was tested on
Microsoft’s Malware Challenge dataset 2 [34] and yielded an
accuracy of 99.8%.

Kolosnjaji et al. [35] designed a deep learning system
that modeled system call sequences based on two parts:
Convolutional and Recurrent. The Convolutional part has
convolution and pooling layers. The convolution layer’s goal
is extracting features from one-hot vectors, while the pooling
aims at dimenstionality reduction. This part does not model
the sequences of system calls but rather counts their existence
as well as the relation of n-grams. Simplifying sequence
modeling leads to losing information fidelity. On the other
hand, the output from the previous part are connected to the
recurrent part; where each output is represented as a vector.
The recurrent layer uses Long-Short Term Memory cells to
model the resulting sequence, which enables modeling the
sequential dependencies of the API calls. The authors then
used pooling to identify the most important features and reduce
complexity. To avoid overfitting, they depended on Dropout.
The last layer they used was a softmax layer that generates
label probabilities.

Kalash et al. used deep learning, a branch of ML, for
classifying samples into families from two datasets of 10K
and 22K samples [36]. They converted samples into images
which they then compared to the training set for each family
and assigned the sample under examination to the family that
had the highest matching score.

Hu et al. [37] built a KNN-based system that uses call graph
matching with the aim of creating an industry-like scalable
system that receives massive number of samples daily. To
overcome the time-consuming graph matching, they relied on
approximate GEDs as well as early pruning in the graph tree.

Gheorghescu [8] designed an ML system that could run
on average desktop machines. His system, which relies on
features extracted from Control Flow Graphs (CFG), compares
unseen samples with previously seen malware, which is stored

2https://www.kaggle.com/c/malware-classification

in a database (DB), and would return matches based on
existing malware’s evolutionary behaviour. He tested three
algorithms: ubiquitous edit distance (ED), B-Tree structure and
Bloom Filters (BF) on his system and compared their accuracy
and execution time. While ED was more accurate than B-Tree
and BF, which had identical results, BF showed much faster
query and insertion time in the DB as well as less storage
space.

Authors of [38] used visual similarity as a basis for malware
family classification. They adopted a KNN based approach
that requires no execution or disassembly of the sample. The
system reads samples as a vector of 8 bit unsigned integers
then organizes them into a 2D array (image representation)
with fixed width and varying height based on the file size.
The execution speed makes the system scalable although it
would fail against samples packed with different packers that
belong to the same family.

Tian et al. [39] base their classification system on strings
extracted from samples disassembled via IDA [40]. Unex-
pectedly, many strings used in the classification originate
from library code, which means that library code is not
distinguished/excluded from the program’s disassembled code
before the string extraction process. The authors compared the
performance of several algorithms like KNN and AdaBoost
and their system reaches an accuracy ranging between 91%
and 97%.

3) Hybrid (Supervised+Unsupervised Learning): In [29],
Rieck et al. introduced an incremental analysis family classi-
fication system that integrates both supervised and unsuper-
vised learning. Their system, which is based on behavioral
reports resulting from dynamic analysis, matches behavior to
previously identified malware families and uses clustering for
unseen ones.

B. Classifying Android Malware

Malware classification academic research is quite primitive
in Android and, thus, is an area that needs more rigorous ex-
ploration and study. We highlight some of the used techniques
in this area below.

Static vs Dynamic Analysis. Generally speaking, family
classification systems may rely on static [11], [13], [14], [41],
[42], dynamic [43] and even hybrid (static+dynamic) [44]
analysis of the samples. Static analysis involves the analysis
of the sample without executing it. The systems that we
mentioned used features from: (1) The dex code: API calls, In-
formation Flows, Control Flow Graph, Call Graphs, (2) native
code, (3) resources, (4) package metadata, (5) certificate,
and (6) the manifest: components, intents, and permissions.
The main advantages of static analysis is its lightweight.
However, for malware that uses obfuscation, indicators of
maliciousness may not be detected at all. On the other hand,
dynamic analysis requires executing the sample in a sandbox,
which generates a report with details on the read/write op-
erations, network connections, sent/received sms messages
and input/output system calls; features are extracted from
those reports. While having its advantage because of the



transparency of code obfuscation in its environment, many
newer versions of malware detect the execution environment
and would not execute their malicious code inside a sandbox.
Dynamic analysis, to the contrary of the static one, is quite
costly in terms of time and resources. Thus, many research is
focused on the lower cost option. On the other hand, the hybrid
technique mixes the advantages of both types of analysis while
still being costly. However, hybrid systems could be used in a
more intelligent manner by using dynamic analysis only when
the system fails to detect maliciousness using the static one.

Feature Selection. Both the static and dynamic features
are extracted using known tools in the community like
Androguard [45] and apkTool [46] for static features and
Droidbox [47] and Cuckoo [48] for dynamic ones. Yet,
these tools usually generate lots of features and sometimes
a feature selection algorithm is needed to discard the less
important ones.

Classifier. With regards to using classifiers to study Android
malware, we note that:

1) Supervised Learning: requires a labeled dataset, which
is split into training/testing sets. The designer chooses
how to split the set. We have seen, 50/50 training% vs.
testing% splits [42], [44], 80/20 [43], [44], 90/10 [11],
[41] as well as 66.6/33.3 [13], [14]. Used algorithms
include KNN [42], SVM [14], [43] and Random Forest
[44].

2) Unsupervised Learning: Clustering is mainly used. It
requires no labeled datasets and consequently no dataset
splitting. One common algorithm, which was used in [44],
is DBScan.

Metrics. Authors of the Android malware classification
systems that we studied measured the quality of their systems
using certain indicators/metrics. These metrics included True
Positive (TP), True Negative (TN), False Positive (FP), False
Negative (FN) and True Positive Rate (TPR) among others
that derive from these essential ones.

C. Industry Practices

The AV industry, while focusing more on detection as
we show later, aims at classifying Potentially Harmful Apps
(PHA) into families as well. We note that we are only
able to provide very limited details on the industry practices
due to the lack of transparency from AV companies; we
have rigorously looked into whitepapers and reports by AV
companies and were able to obtain generic rather than more
focused information. We found that, generally, AVs integrate
several techniques in their family classification systems. These
methods include:

1) Signature: is the most classical method used for classi-
fying already known malware where the AV matches the
malicious code of the sample in question to a fingerprint
of malicious code in its repository [49], [50].

2) Heuristics: includes static and dynamic heuristic analysis.
The static heuristic analysis compares the decompiled
code of the sample to suspicious code in previously found

malware and flags the samples as a possible threat if the
suspicious code passes a certain threshold. The dynamic
one executes the sample in a sandbox and flags the sample
if suspicious behavior is found [51].

3) Machine Learning: where samples are collected from
different possible sources like shared threat platforms,
honeypots, end-users, etc. AVs may use supervised as
well as unsupervised ML techniques to create their model
on which they classify samples into distinct families [9],
[52]–[55].

We have seen over the past few years how different AV
companies have proliferated while relying on third-party en-
gines. This responds to a classical business strategy where
some companies focus on commercializing technology that
they outsource to others by developing state-of-the-art methods
in the field. For example, BitDefender® and Avira® are two
known outsourcing engines. According to [56]: 1) Emsisoft®,
Tencent® and G- Data® use BitDefender; 2) F-Secure® uses
Avira; and 3) Qihoo 360® uses both BitDefender and Avira.
Yet, even though AV vendors share threats and samples [9],
[55], [57]–[59], they are still competitors and try all means to
find the adequate model to maximize their profit.

III. USAGE OF ANDROID MALWARE FAMILY LABELS

In this section, we demonstrate how both the AV industry
and the academic research community use Android malware
family labels. We discuss the lack of consistency across AV
vendors, issues in transparency about the methodologies used,
and the noticeable effects of the challenges behind curating a
dataset.

A. Usage by the AV Industry

We first analyze malware reports from several AV vendors
as well as Google to identify prevailing families.
Methodology. We searched for reports from prominent com-
panies published since the emergence of Android OS. First,
we searched on Google using keywords and key phrases
like “threat reports”, “cyber threat intelligence reports”, “top
malware families in Android”, etc. Then, we manually went
through all the reports and annotated the aliases of different
malware families. Next, we matched the annotated aliases
against known threat encyclopedias3,4, which showed varying
results for labels (more on this in Section V-B). We also
studied reports by government agencies, and used VirusTotal
to ascertain that our annotations related to family names.
Results. In total, we include information from 30 reports
from 6 companies5 ranging from 2012 to 2020. We only
retain reports from companies that discuss Android malware
families specifically. Table I provides the total number of
reports/year that we retain and use in our study. We note here
that we gathered more reports from additional years as well
as from more AVs, but we discarded them due to the lack of
information on android malware families.

3https://www.microsoft.com/en-us/wdsi/threats
4https://www.fortiguard.com/encyclopedia
5Nokia, Sophos, CheckPoint, Google, Kaspersky, and Symantec.



We find that the reports are predominately marketing-
oriented and they generally lack consistency, even for the same
entity, be it: (1) in the frequency of the reports (e.g., Nokia’s
reports for the 2nd half of 2014, 1st and 2nd half of 2015, and
all-year for 2017, 2018 and 2020), or (2) in the format of the
report, where they lack information regarding families in one
year and provide it in others (e.g., Google provides generic
information mixed with examples of families in 2016’s report
and includes more family names in other years).

We also observe that some AV reports are oriented towards
different threat components of the malware ecosystem. This
is only natural as each vendor prevails in certain geographical
markets more than others. Thus, AVs (unlike Google) do not
have a global situational awareness and provide different ver-
sions of the most significant threats. Besides, the inconsistency
in malware naming and the use of different aliases for the
same family adds complexity to the analysis, possibly making
readers believe that different aliases represent different threats.

To understand these differences, we analyze the set of com-
mon families between the AVs. Table II summarizes the top
most popular families found. We emphasize the challenge we
encounter when analyzing the commonalities between vendors
due to the lack of consistency in the naming convention.
We find that even though Google and some AVs interesect
in some families, sometimes it is difficult to uncover this
intersection. Google’s family naming tend to be more flashy;
they use animal names (e.g., FlashingPuma, SnowFox) and
food (e.g., IcicleGum, BreadSMS). On the other hand, AVs
use more threat-oriented names (e.g., Opfake, HiddenApp).
We attribute this to the markets which each of them targets.
Google’s choice of names follows a long line of dessert names
for its OS releases, while the AVs’ choice is based on showing
their (potential) customers the effectiveness of their solutions
in combating threats. We highlight the AVs’ inconsistency in
reporting the number of prevailing families: Kaspersky reports
the top 20, Symantec reports the top 10, and Google does not
tend to provide a fixed number of top threats. Likewise, AVs
provide percentages of threats, sometimes vaguely through
figures (e.g. Sophos), while Google provide none.

Takeaways. We extract these takeaways from our analysis:
• Companies are not consistent in a) including family

names in their reports, and b) providing detailed technical
information about these families. Instead, reports are
rather generic with a shallow technical details and geared
towards showing the effectiveness of their solutions.

• Lack of consensus between AVs on the most prominent
threats of each year. Even in years when there are a large
number of reports discussing specific families (i.e. 2016-
2018), consensus is limited; the peak occurred in 2018
with Triada, where 4 out of 6 vendors included it in their
top families’ list.

• Even as time passes, transparency in reporting families
does not seem to improve, which confirms their marketing
tendency vs. the technical one: only 2 vendors published

reports in 2019 and 2020 although we had 5 reporting
vendors in 2018.

B. Usage in Academic Research

We next study how the research community leverages
Android malware labels for different measurement studies,
classifier design papers, or others (see TableV).
Methodology. We performed a semi-manual analysis of An-
droid related papers published in top computer security con-
ferences, between 2011 and 2020. In particular, we looked at:
1) CCS, 2) USENIX Security, 3) S&P (Oakland), 4) NDSS,
5) ACSAC, 6) RAID, 7) ASIA CCS, and 8) DIMVA. We
then went through the Web pages of each conference year by
year, whenever available, and searched for a set of keywords
in the title and abstract. If the Web page of the conference
in that particular year was not available or did not list the
abstract, we checked the proceedings of the conference. We
used the following keywords in our search: malware, android,
google, mobile, app, dataset, data set, smartphone. Finally, we
qualitatively studied all resulting papers.
Results. We identify a total of 81 papers that use an Android
malware dataset; We refer the reader to the paper distribution
in Table VII. We clarify that there are papers in other areas
of the Android research space that receive the attention of
researchers, but are not relevant to our study — papers looking
at developer’s methodology or the study of 3rd party libraries
are a few examples. Table III shows the prevalence of datasets
used in the literature. We group together papers according to
the dataset they use. In the table, even though we use the UNK
in the lower bound whenever we lack information about the
number of samples, it is more of a formatting matter and it
might perfectly be the upper bound. We note that:

• Several papers use datasets that they craft from AV
companies. Although each one of them is unique, we
aggregated them into a single row called Companies for
better readability.

• Custom refers to non-specific datasets that were built
by the authors themselves for their work and were not
released to the community.

• Unknown are those sets for which we could not identify
if they were Custom or samples from a different reposi-
tory/dataset.

We also report the number of samples in each dataset. The
largest dataset has about 4.6M samples, but the most popular
datasets are several orders of magnitude less. When a dataset
is distributed with labels, we report the number of families.
Families range from 49 to 179 and labels usually come from
VT after being harmonized (see Table III column class mthd).
Finally, we account for collection period as reported in the
paper describing the dataset. Only a few papers detail the
collection period. Regardless of the collection period reported,
Table IV uses VT to show the first time the samples in a dataset
have been seen in the wild (namely, first seen).

Another phenomenon we came across is the aggregation
of several datasets that come from different resources like



Company Year (20xx)
12 13 14 15 16 17 18 19 20

Symantec® - - - Y [60] Y [61] Y [62] Y [63] - -
Nokia® - - H2 [64] H1,H2 [65], [66] H1,H2 [67], [68] Y [69] Y [70] - Y [71]
Sophos® - Y [72] - - Y [73] Y [74] - - -
Kaspersky® Y [75] - Y [76] Y [77] Y [78] Y [79] Y [80] Y [81] Y [82]
CheckPoint® - - - - H1 [83] Y [84] Y [85] Y [86] -
Google® - - - - Y [87] Y [88] Y [89] - -
Companies/Yr Tot. 1 1 2 3 6 6 5 2 2

TABLE I: Availability of informative reports that provide top families per AV service of the companies in the table. H1, H2: a report of the
first and second half of the year, respectively, Y: company provides a full-year report. The last row represents how many vendors reported
on that year regardless of the number of reports/vendor issued.
.
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Common Families
14 2 N/A
15 3 Opfake (K, SM), Lotoor (K, SM), Leech (N, K)
16 6 Opfake (SM,SP), FakeInst (SM,SP), HiddenApp (SM,N),

Hummingbad (C,G), Ztorg (C,K), Rootnik (SM,N)
17 6 Simplocker (SM, SP), Rootnik (N, SP), Sivu (K, N), Ztorg (K, N),

Hiddad (K,C), Triada (K,C), Ztorg (K,C)
18 5 Triada (G, K, N, C), HiddenApp (SM, N), Lotoor (K, C), Xiny (G, N)
19 2 Necro (K, C)
20 2 Hiddad (N, K)

TABLE II: Top Common Families found in Android threat intelligence reports 2014-2020. Reports column refers to total number of reports
in that year. K: Kaspersky, SM: Symantec, N: Nokia, SP: Sophos, C: CheckPoint

in [136]. While this helps researchers to obtain more samples,
it can change the representativeness of real world scenarios
when combined with live feeds such as those given by
VirusShare. We believe such representativeness is exclusive
to AVs and that academic solutions will stay in the proof of
concept area. We address this more in the next section.

Finally, Table V indicates the different objectives that our
set of papers have. Papers may have more than one purpose,
which explains that the sum of the # Papers is more than
the total number of papers we surveyed. We also note the
following:

1) Detection does not necessarily mean malware detection
only, but rather any type of detection (e.g. [16] focuses
on ransomware detection).

2) Analysis indicates any analytical/measurement study,
e.g., comparison between families, benign and malware,
results from AVs, etc.

3) Family Classification also includes type classification,
e.g., ransomware vs other malware types.

4) Tools whose goal is not detection/family classification,
such as forensic tools, tools for protection, etc.

5) Other refers to purposes not falling in the above cate-
gories. In our set of papers, this includes attack design,
fingerprinting apps through traffic, model-checking based
detection, and others.

Takeaways. Based on our findings, we deduce the following:
1) Lack of ground truth. Most datasets do not contain

family labels. Understandably, only a few early and small
datasets were the result of manual labeling efforts, e.g.:
[10]. Knowing the morphology of a dataset (i.e., the
family labels) may inform practitioners of how the dataset
is balanced towards certain type of threats. While this
might have a lesser impact on malware detection research,
the lack of ground truth for the families is an obstacle for
those studying malware family classification.

2) Use of VirusTotal (VT). Academic researchers rely heavily
on VT to analyze (and label) their samples: 18 out of the
32 datasets in Table III had their samples scanned on
VT in at least one of the papers that used that dataset.
Researchers generally label a sample as malicious if it
is flagged by more than a certain threshold VT engines,
e.g. [94], ignoring the fact that many AV products rely on
3rd party AV engines [56]. For the research community,
the dilemma lies in that VT is an easily accessible
resource. However, we argue that this resource should
be used with a good understanding of its limitations.
For instance, VT rely on a simplified version of the
represented AV engines6 which introduces limitations
when seeking consensus or comparing engines.

3) Unknown representativeness. We find information about
when the samples are generally collected. However, de-
tails about when the samples were observed in the wild

6https://blog.virustotal.com/2012/08/av-comparative-analyses-marketing-
and.html
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Dataset First seen range
Malgenome 14/10/2009-12/06/2012

Contagio 25/02/2011-20/03/2018
Drebin 14/10/2009-10/08/2013

VirusShare 11/04/2010-UNK
AMD 17/11/2010-14/05/2016

TABLE IV: Date ranges for the samples contained in well-known
datasets.

Research purpose # Papers
Detection 34
Analysis/Measurement 23
Tools 21
Family Classification 8
Other 5

TABLE V: Objective(s) and main focus of our set of papers

and their subsequent prevalence are usually not reported.
We observe discrepancies across papers regarding such
dates, even in known datasets such as Malgenome [10]
and Drebin [12]. For instance, the authors of Drebin [12]
rely on VT to obtain their labels; they mention that the
dataset contains samples seen between from 2010 and
2012. However, when we independently query VT, we
find that the first seen dates are between 2009 and 2013
(see Table IV). Taking into account sample dates is impor-
tant to avoid: a) training classifiers with outdated samples
that are no longer representative of the threat landscape or
b) training the classifier with recent samples while testing
it using older ones. However, obtaining an accurate value
of the date in which a sample has been in operation
can be challenging. First, threat intelligent might not
be available. Next, timestamps from the samples can be
easily tampered with. Finally, estimating it from the min.
SDK and the max. SDK offers a very coarse range of
dates.

4) Label harmonization. It is a rather common practice to
use semi-automated processes to perform label harmo-
nization when performing family classification. A popular
tool is AVCLASS [24], although there are others e.g. Eu-
phony [18] and AVCLASS2 [28].7 Manual labeling was
used only in [10] when authors inspected the set manually
to determine the family of each sample; something not
scalable when constructing bigger sets.

5) Use distribution. Out of 146 uses of the datasets in our
study, more than 70% use 7 popular datasets. Malgenome
alone is almost used 25% of the times even in recent
works [28]. On the other hand, our analysis shows that
about 30% of the works use an unpopular set. Some
of these sets are proprietary or unavailable. This is a
clear sign that authors have confidence in well established
datasets. For instance, Wang et al.’s dataset [113], which
appeared in 2018, has 4.5M samples and is accessible to

7Euphony [18] and AVCLASS2 have been used in [136] and [28] con-
secutively, but we do not include them in Table III because they were not
used when crafting a dataset but rather when authors were designing their
experiments.

the community, but was only used once.

IV. COVERAGE ANALYSIS

To take a deeper look at the AV labeling techniques used by
the industry, we build an extensive dataset of over 2 million
samples. We next present an overview of our dataset then we
evaluate the coverage that different engines have over it.

A. Our Dataset

To build a comprehensive Android malware dataset, we rely
on several sources. We then query VT to collect intelligence
from the AVs.
Data sources. One of our main sources is AndroZoo [96].
At the time of writing, AndroZoo contains a little more than
13M apps collected from 14 different markets and repositories,
including Google Play. For each sample, AndroZoo provides
the number of VT detections as well as the sample’s hash
(sample hereafter). We filter apps with 1 or more detections,
which leads to a set of 2.55M apps that we query on VT to
obtain the AV labels. When querying VT we found that about
300K samples where no longer considered malware by any of
the VT engines. Consequently, we only retain the remaining
2.24M samples that have at least one AV detection at the data
collection time. Besides, we collect samples from academic
datasets and commonly used repositories. We complement that
with samples from the OTX AlienVault platform [137] and
from Palo Alto Networks [138]. Table III shows a summary of
all the data sources and the number of samples. After removing
duplicates, our final set includes approximately 2.47M samples
for which we provide more details as well as the distribution
of the samples over the years 2009-2020 in Table VI.

Source Samples 1st seen Range
Malgenome 1.2K 14/10/2009-12/06/2012

Contagio 1.6K 25/02/2011-20/03/2018
Drebin 5.6K 14/10/2009-10/08/2013
AMD 24K 17/11/2010-14/05/2016

Palo Alto 104K 07/11/2011-03/05/2019
OTX 116K 26/09/2012-09/07/2020

VirusShare 170K 11/04/2010-27/12/2019
AndroZoo 2.24M 14/10/2009-03/11/2020

Total 2.47M ∼ late 2009 to late 2020
TABLE VI: Datasets used in our analysis. The 1st seen range is
according to VT and for the samples we collect (as opposed to the
samples in the entire repository like in Table IV). For instance, in
the case of VirusShare it relates to the snapshot of 170K samples.
Total refers to total apps used in the experiments after discarding
duplicates.

Dataset Characterization. After analyzing the intelligence
offered by VT, we discovered that the number of AV detections
vary from sample to sample. For example, some AVs report
samples as undetected, possibly white-listed because the sam-
ples are known to be “goodware”. These very AVs do not
appear at all in other sample reports, which might be because
they refrain from making a decision in these cases because
the sample was namely unseen. We encounter a total of 100
different AV engines in all the reports collectively. This is



different than the number of engines reported in other works;
a few examples are 56 engines in [12], [94], 60 in [139], 65
in [140] and 77 in [19]. In our dataset we find the average
number of engines per report to be 58.7 AVs, the minimum of
AVs per report to be 13 and the maximum 68. VT’s behavior
with regards to having an unfixed number of scanners for each
report is orthogonal to the problem we are studying, but in the
scope of our future work.

Another observation we have is that some AV vendors
contribute with more than one engine. For example, Sophos
vs. SophosML, and TrendMicro vs. TrendMicro-housecall, to
name a few. Additionally, 5 engines have 0 detections for the
entire set of samples (i.e., they report all samples in our dataset
as undetected or unknown), 9 with less than 10 detections, 17
less than 100 detections, and 33 engines with less than 1K
detections; the latter representing 0.04% of the dataset. Thus,
from an original set of 100 engines, after discarding all these
low detection engines, we are left with with only 62 engines
to look into.

Figure 1 summarizes the prevalence of AVs that mark
samples in our set as malware based on the VT reports. We
compare this with the number of detections that AndroZoo
recorded from VT previously.8 We conclude that there is a
general disagreement between AVs on whether a sample is
malware or not. To detect 90% of the samples, collective
results from 29 engines were aggregated (cf. CDF from VT
reports). However, with just 10 additional engines on the same
curve, the CDF reaches almost 100% of sample detection.

Furthermore, we find that the same set of samples have
more detections over time as we compare our snapshot of VT
reports with AndroZoo’s while others disappear— in particular
samples in the 1-5 band. We note how AV engines “flip”
their decision from detected to undetected and viceversa.
Overall, about 13% of the samples that have 1 detection as
per AndroZoo, have 0 hits in our latest snapshot. We do not
investigate further the reasons of these detection flippings, but
we note that our observations go in line with related work
looking into the flipping decisions of AV engines over time
[140].
Takeaway. Our findings suggest that Android malware detec-
tion is a highly specialized task within the ecosystem. Only
few engines offer comprehensive detection. In particular, we
find that the top 10 AVs jointly flag at least 85% of the dataset.

We, thus, focus the rest of our analysis on the top-10 most
effective AV engines according to their coverage, as defined
next.

B. Results of Coverage Experiments

Single AV Coverage. We first analyze the fraction of samples
that have been detected as malware by at least one engine
(which changed to 5 after rescanning the samples) and are
given a non-empty label. We refer to them as labeled samples
hereafter. Our results are summarized in the highlighted main

8Note that other datasets do not report the first seen and thus our comparison
is restricted to AndroZoo.

Fig. 1: CDF of AV detections for samples in our dataset. x-axis
represents # of engines detecting samples, y-axis is the percentage
of samples in dataset detected by this # of engines.

diagonal of Figure 2. Even though the top 10 AVs collectively
account for a large portion detections, the individual engine
coverage only ranges between 39% and 64%. This shows that
the performance of the AVs drop considerably when it comes
to reporting actionable intelligence in the form of labels.
We note that these results do not necessarily indicate label
correctness. To get a deeper understanding of this issue, we
later measure the consistency of the labeling process.
Coverage across AV engines. Besides, we measure the cover-
age across every AV engine pair (cross coverage hereafter). To
do so, we count the number of labeled samples that are flagged
by both AVs. Given that we focus our analysis on 10 AVs, this
results in 45 possible AV pair combinations. The values of the
cross coverage are shown under the main diagonal in Figure 2.

In general, our results show that the cross coverage is
predominantly lower than the single coverage of most of the
10 engines. The average cross coverage is 32%; much lower
than the 46% average of the single coverage. We note that
the largest overlaps are with ESET-NOD32 (labeled as A in
Figure 2), with the highest value being 52% for the (ESET-
NOD32, Ikarus) pair and the lowest overlap’s value being 20%
in the case of the (SymantecMobileInsight, F-Secure) pair.

When we compare both the cross coverage and single
coverage in Figure 2, we observe the proportion of samples
that 2 engines share and that they do not. For instance, A has
labels for 90% (52/57) of B’s samples. On the other hand, B
alone has labels for 5% (57-52) of the entire dataset and, in
turn, A alone has 12% (64-52). The 10 engines collectively
agree on just 6% of the samples. Also, we find that the samples
that are flagged solely by any of the top 10 AVs along with
AVs outside of the top 10 (there are at least 5 flags/sample),
represent only 15% of our dataset.

V. LABEL ANALYSIS

We next discuss the original convention of “malware” labels
that was introduced in the early 1990s and how it is compared



Fig. 2: Heatmap for the top 10 engines in coverage. A: eset-
nod32, B: ikarus, C: fortinet, D: cat-quickheal, E: nano-antivirus, F:
symantecmobileinsight, G: avira, H: cyren, I: k7gw, J: F-secure. The
cells with the light green edges are those that represent the single
coverage for the engines.

to real-world labels assigned by AVs nowadays. We address
the fact that the real-world labels are inconsistent, causing
problems for researchers who then have to seek help from label
unification tools that we describe as well. Additionally, we
discuss the inconsistencies that we discovered when analyzing
our dataset.

A. Labeling Convention

In addition to detecting malware, AV engines generally
provide a label that characterizes the malware specimen de-
tected. There have been various attempts by the industry
to standardize the label format. In 1991, the Computer AV
Research Organization (CARO) [141] suggested the following
naming convention:

The full name of a virus consists of up to four parts,
delimited by points (‘.’). Any part may be missing,
but at least one must be present. The general for-
mat is Family Name.Group Name.Major Variant.-
Minor Variant[[:Modifier].

where Family Name represents the family that character-
izes the virus; Group Name represents similar viruses within
the family (i.e. sub-family), and Major Variant and Mi-
nor Variant are modifiers used for structural and behavioral
differences across variants.

The key principle behind the CARO naming scheme is
that malware samples can be grouped into families accord-
ing to their code similarity. Even though CARO was never
fully adopted, the majority of AV engines today use labeling
schemes that follow the same principles, going from the
more general information to the more specific. In addition to
the components described above, labels are often prepended

with tags describing the platform and the malware type. The
platform refers to the execution environment of the sample
which includes Operating Systems, frameworks and scripting
languages. The type refers to the main threat category in
terms of malicious behavior, such as Trojan, Worm, Ran-
somware, Virus, Backdoor, etc.

B. Labeling Challenges

While AVs adhere generally to the CARO convention, some
use labels that are very generic or indicate the use of a heuristic
to characterize the sample. Others use labels lacking a taxon-
omy or a naming convention, but rather represent technology
or are just generic labels. For example, McAfee often uses
the term Artemis!¡some automated string¿, where Artemis is
the name that the company gave to the technology it uses to
systematically characterize samples [142]. The first challenge
lies in that the naming convention used to describe labels is
heterogeneous and there is a lack of a proper taxonomy.

AV label unification tools like [18], [24], [28] are an
important step forward, where AVCLASS2 [28] is the most
recent one. It is a platform agnostic tool that obtains the
common labels from VT reports that have non-empty labels
from 2 or more engines. It extracts 5 categories: 1. Behavior
(BEH): captures the malware behavior when the samples
was executed e.g. spam, sendsms ,2. CLASS: equivalent to
CARO’s type, 3. Family (FAM): malware grouping based on
similar characteristics like having the same author [143] e.g.
Lotoor, Triada, 4. FILE: equivalent to platform described in
Section V-A and a 5th category UNK for concepts which are
neither in the taxonomy nor in the tagging rules. AVCLASS2
could generate one or more UNK tags. The tool discards any
generic labels e.g. Trojan. The authors of AVCLASS2 used
millions of labels to identify categories that are real ones
compared to those categories that add no value. Additionally,
the tool has an update module which allows extending the
original so as to include new instances in the four main
categories. Similarly, the authors of Euphony [18] have studied
the different taxonomies of labels but just for Android. Based
on their findings, they created lexing rules on which they
divide a label into four categories: a) type of threat e.g. virus,
worm, b) platform: same as the one defined in Section V-A, c)
family name, and d) information: extra description of threat
e.g. variant. Because of the lack of knowledge, changes in
labeling methods, etc, the authors propose a set of 10 heurestic
rules so as to map AV label tokens to one of the categories,
where it also relies on a database of initial knowledge on
malware labels.

The first challenge is faced when using such label unifi-
cation tools as that requires fine-tuning; an error-prone task.
For instance, it requires considerable domain knowledge to
understand that Artemis is McAfee’s a generic term. Yet, pre-
defining this term is a critical step to avoid subtle errors
during label unification. Another related challenge is that the
labeling methodology is unknown and not consistent across
vendors. This has significant implications when drawing the
line between variants and families, which is a challenging task



as shown in [144]. However, AV vendors make such judgment
on a regular basis, which results in different levels of granu-
larity (across vendors). For example, in spite of Microsoft’s
engine on VT considering FakePlayer and FakeBrows different
families, we find that Dr. Web considers both as variants of
the same one Android.SmsSend.2 and Android.SmsSend.401
respectively [145], [146]. This inconsistency in the ground-
truth can mislead approaches based on supervised-learning.
In fact, a recent work showed that reviewing labels is of
paramount importance so as to be able to perform reliable
automated classification [147]. Third, some AVs may be using
a third-party AV engine for labeling as already explained
in Section II-C. This requires further consideration when
using thresholds to decide on a sample’s maliciousness or
label. Finally, given the fact that vendors share samples
(see Section II-A), some approaches involve looking at these
relationships and taking them into account. Approaches such
as that of [148] weigh AV labels based on performance
metrics and consider correlations that can negatively impact
the confidence (weight) given to a vendor.

C. Engines Label Findings

To understand better our set, we did a visual-manual analy-
sis for the label taxonomies of the top 10 engines in coverage.
Generally speaking, except for SymantecMobileInsight and
K7GW, the other AVs lack consistency in their label taxon-
omy. Due to limited space, we highlight the most interesting
findings for each AV.

1) ESET-NOD32: 3K samples have the label multiple detec-
tions. Sometimes the string includes a variant of before
the label and sometimes it includes potentially unwanted
or potentially unsafe after the label. 193K samples i.e.
12% of the AV’s flagged samples are labeled a variant of
Android/Packed.Jiagu.¡some variant¿ potentially unsafe.
Yet, Jiagu refers to Jiagu 360, a famous Chinese packer
not a family name.

2) Ikarus: We found labels such as AdWare.Adware, Ad-
Ware.ANDR and AdWare.AndroidOS. We are not able to
explain the inconsistency in these similar labels. Also,
samples whose labels lacked a family name but used the
word Qihoo and Jiangu (both Chinese packers) are quite
frequent.

3) Fortinet: Lack of class name is quite frequent
e.g. Android/Styricka.A!tr. Riskware/Jiagu!Android
is the top label with 103K samples (9%).
Android/Agent.FS!tr.dldr represents 4% of the labeled
samples. Adware/Waps!Android and Adware/Waps.G
appear to be the same, but one has the platform name
while the other lacks it (they collectively represents
4.5% of labeled samples).

4) Cat-QuickHeal: Lack of identifiable family name e.g.
in Android.km.Aeb23 (PUP) is km the family name
or just a randomly generated string with some au-
tomation tool? Generic labels Android.Downloader.N
and Android.Agent.GEN23333 (PUP) represent 8% of

the dataset. Similarly, Android.Jiagu.A (PUP) represents
4.3% of the set.

5) Nano-Antivirus: 5% of the samples are labeled
Riskware.Android.Agent.entxvm, which is the top label in
the set.

6) SymantecMobileInsight: 64% of the labels
are not associated with a family. The labels
follow this format: AppRisk:Generisk, AdLi-
brary:Generisk, Other:Android.Reputation.1 and
Other:Android.Reputation.2

7) Avira: 4.7% of the samples have the generic label
ANDROID/Dldr.Agent.FS.Gen, the second most frequent
label. Labels with numbers as family name e.g. 33 in
Android/DownLoader.33.31 are not uncommon. Also, we
are not sure if the family name can be represented by all
uppercase or the family part is just randomly generated
and the samples lacks a family name e.g. AMAA in the
label ADWARE/ANDR.AdDisplay.AMAA.Gen.

8) Cyren: It uses completely different taxonomies in its
labels like
AndroidOS/GenPua.95BB2BF2! Olympus and
Trojan.BYLR-9. Also there is a lack of family name in
the first, and unidentifiable family name and missing
platform in the second.

9) K7GW: Lacking family name as well as platform in all of
its labels e.g. Adware ( 0053361f1 ), Exploit ( 004c0f451
).

10) F-Secure: Lack of consistency in top labels Ad-
ware:Android/AdWo and Android.Adware. Adwo.A, which
represent collectively 8.4% of the labels.

We deduce from this analysis that AVs generally are unable
to identify the family names in a clear and definite manner.
There maybe several reasons for that:

• Prioritizing detection over family identification. This is
seen in ESET-NOD32, Fortinet and Cat-QuickHeal
which give packed samples labels related to packing
rather than their unwanted behavior.

• Lack of knowledge of the territory because of Android’s
relative novelty compared to the well-established exper-
tise in Windows which has been there for decades.

The lack of a globally agreed on taxonomy between vendors
is a source of confusion to researchers who use labels in their
studies. Even single vendors have several taxonomies, which
makes label analysis even more difficult. Based on our analysis
of labels as well as the philosophy on which CARO bases
its taxonomy, we suggest one that goes from the upper level
structure to the lower level details. We use the same categories
used by AVCLASS2 and Euphony that we explained earlier.
Thus, our proposed format would be as follows:

Platform(File).Class(Type).Behavior.Family.FamilyVariants
We note that one of the main difficulties we faced when

looking at labels from the different AV engines was the
variation in the number of levels i.e. some labels lacked some
of the categories in our recommended taxonomy. Hence, to
facilitate label analysis and study, labels need to have some



kind of globally agreed on null character in those categories
whenever the value is undecided.

VI. FAMILY AND CLASS ANALYSIS

We next report results on our analysis of the family and
class labels assigned by each AV engine to detected samples.
We focus on:

• Measuring the ability of unifying tools (AVCLASS2 in
this case) to extract family and class names from the
samples that each of the engines flags. We also run the
same experiments for the AV pairs.

• Measuring the coherence across engine pairs when group-
ing together samples according to their families by identi-
fying the agreement level among the family clusters of the
different AV engines without taking into consideration the
actual family names used by the engines. We repeat the
analysis for the class labels. Both coherence experiments
help us determine if the underlying classification method-
ologies used by different AVs produce similar results or
not.

A. Family and Class Name Extraction

Extracting familiy names for single AV engines. We rely
on AVCLASS2 to extract family names from the labels.
AVCLASS2 generally requires at least two engines to extract
common categories. Thus, we build our own scripts on top
of it so as to extract the family and class even from a single
AV engine. The percentage of family name extraction with
respect to the total number of labeled samples for each
engine is shown in Figure 3. We observe that the ratio of
samples for which we successfully obtain a family label
ranges between 2% and 82% (with respect to labeled samples
not the entire set), with the majority of values falling in
the 50-70% range (average is 53%). This indicates: (a)
samples are not labeled with clear extractable names, which
is probably the main reasons that leads to (b) AVCLASS2’s
failure to detect the family name from a substantial amount
of the labels. Unclear labels are caused by the engine’s failure
to attribute the sample to a particular family. One of the
reasons behind that is perhaps the use of heuristic detection
techniques that indicate abnormal or malicious behavior
without attributing it to a particular family. Examples include
SymantecMobileInsight’s label trojan:genheur, Ikarus labels
not-a-virus:HEUR.RiskTool.AndroidOS.Agent, HEUR.Trojan-
Spy.AndroidOS.Agent, HEUR.Backdoor.AndroidOS,
and HEUR.Trojan-SMS.AndroidOS.Tiny and Avira’s
labels ANDROID/SMSSpy.HEUR.Gen and AN-
DROID/SMSHEUR.C.Gen
Extracting class names for single AV engines. We repeat
the previous experiment for the class name. The results are
shown in Figure 3 as well. Except for Nano-Antivirus, we
notice a clear drop in the percentages of class name extraction
compared to the family’s. We attribute this change to two
factors: (a) some engines use labels that lack classes but
have a family name (e.g. ESET-NOD32’s label a variant
of Android/Anserver.E has the family name Anserver but no

Fig. 3: Percentage of family/class detections in all labeled samples
for the top-10 engines in coverage.

class name); (b) Inconsistency between label formats, which
makes it impossible for AVCLASS2 to parse them because
of the engine’s taxonomy that does not take the category into
account. This is clear in the case of SymantecMobileInsight,
whose label taxonomy’s main pattern is Behavior:Family caus-
ing AVCLASS2 to detect only a small subset of the classes.
Extracting family names for AV engine pairs. We carry out
this experiment by using results from the single family names
experiment. For this, we count the samples for which families
were obtained for both engines regardless of whether they hold
the same name or not. The results are seen in the histogram
shown in Figure 4, which has 10 bins. The ratio of family
name extractions by AVCLASS2 to the size of cross coverage
ranges from almost 0% up to 74%, where i ≤ bini < i+10 for
i = 0, 1, . . . , 9. We found that the most frequent bins are those
of 0%, 50% and 60%, each representing around 20% of all the
AV pairs. This is much different than the values of the single
AVs, which were concentrated in the 50-70% range. Also, the
mean was found to be 37%, a significant drop compared to
the 53% mean for single AVs. We attribute this to the fact that
the performance of each engine is different than the others.
Extracting class names for AV engine pairs. We repeat the
experiment of the family pairs but this time for the class pairs.
Similar to the drop in single class name extraction compared
to the single family name extraction, the pair class name
extraction is notably lower than its family counterpart as seen
in Figure 4.



Fig. 4:.
Histogram for

FAM/CLASS label identification in both engines

total cross coverage for engine pairs
after using AVCLASS2

(A2) to extract FAM/CLASS. max(A2 FAM)= 77% , max(A2
CLASS)=55%. CAT here refers to category and not

Cat-QuickHeal.

B. Classification Coherence across Services

Given the lack of knowledge about the internals of the
AV engines and their labeling methodology, we explore how
similarly these engines classify malware samples into the same
clusters. To this end, we base our analysis on a well-known
metric used to compare the output of clustering algorithms:
the Rand index [149]. According to [150], “the Rand index
[...] may be interpreted as the ratio of the number of object
pairs placed together in a cluster in each of the two partitions
and the number of object pairs assigned to different clusters
in both partitions, relative to the total number of object pairs.
Thus, the Rand index combines two sources of information,
object pairs put together, and object pairs assigned to different
clusters, in both partitions.”

In our context, we use the Rand index as follows. For every
pair of AV engines AVa and AVb, we compute the dataset Da,b

for which both AV engines produce family labels. Let Na,b =
|Da,b| be the size of such dataset. Let A = {a1, . . . , ax} and
B = {b1, . . . , by} be the clusterings of Da,b into families
according to AVa and AVb, respectively. That is, each ai is
the group of all samples in Da,b that AVa labels with the same
family name. The same applies for bj with respect to AVb. We
now compute the next two quantities: x is the number of pairs
of sample labels in Da,b that are in a certain cluster in A and
in its corresponding cluster in B. Similarly, y is the number of
pairs of sample labels in Da,b that are in different clusters in A
and in different clusters in B. Intuitively, x and y measure the
number of agreements and disagreements in the labelings of
A and B, consecutively. The rand index for these labelings is

computed by normalizing the sum over all possible matchings:

R(A,B) =
x+ y(

N
2

)
The Rand index allows us to measure the similarity between

the family labeling done by two AV engines regardless of
the actual family names given by each product. Its value
ranges between 0 (denoting full disagreement) and 1 (meaning
that both engines produce the same assignment). To compute
each of the Da,b datasets for each pair of AV engines, we
rely on results from Section VI-A for family and class name
extractions for AV pairs. When applied to the family names,
we refer to the result as the family coherence for the pair of
AV engines. In the same manner, when the objective is to
measure the class clusters, we call the output class coherence.

C. Family and Class Coherence

Family Coherence. We carry out 2 tests, which we explain
below, to measure family coherence. We call the engines in
each AV pair AV1 and AV2.

1) We use the results of the Family Name Extraction
experiment of AV pairs as an input.

2) We complement the list of family names with full labels
of AVi for which AVCLASS2 could not obtain a FAM
value.

We provide the coherence results for family only as well
as family complemented with full labels for samples that
don’t have a family name in the curves FAM and FAM+LBL
consecutively in Figure 5. While our experiment above has
its own limitations, it is still a best effort because of our
inability to obtain the family name from every sample. The
limitations are in part due to the fact that many samples
have either unclear family names or do not have a family
name at all. We have seen this phenomenon in the majority
of engines and provide one example only from Avira for
the sake of brevity: (a) ANDROID/AdDisplay.Zdtad.G,
(b) ANDROID/AdDisplay.3443048, and (c) AD-
WARE/ANDR.AdDisplay.AMAA.Gen. In (a) we can clearly
identify Zdtad as the family, but (b) has only non-family
categories and we are not sure about (c) having a family or
just randomly automated characters especially that they are
all in uppercase. We realized that labels that mix uppercase
and lowercase were clear family names but those having only
uppercase seemed to be just automatically generated strings.
We leave the study of this phenomenon for future work.
Also, another limitation was because of the inconsistency
in the taxonomies of the engines. With the exception of
SymantecMobileInsight and K7GW, all the engines had no
clear consistency in their taxonomies. This made our task
difficult when it came to clearly identifying the family name
on our own. Thus, we decided to use the full label whenever
FAM was not available as explained earlier.

Class Coherence. We repeat the coherence experiment for
the class level. We first only use the samples whose class was
extracted for both AV engines. Afterwards, we complement the
experiment with the full labels of the samples whose class was



not extracted. The class coherence results for the CLASS only
experiment as well as the CLASS label that is complemented
with the original label for samples that lack it are demonstrated
in the CLS and CLS+LBL curves consecutively in Figure 5.

D. Analysis of Family and Class Coherence Results

We realize a notable change after including full labels
when measuring coherence for each of FAM and CLASS. The
inclusion of full labels leads to a drop in the coherence values
of both, which is clearly seen in Figure 5 when comparing the
curves FAM and FAM+LBL for the family coherence case,
and the curves CLS and CLS+LBL for class coherence. This
means that the family/class clusters are negatively affected
when including full labels; an expected consequence of the
inclusion of these less regulated tags (the full labels). It also
indicates the lower commonality in these tags as compared to
the FAM/CLASS tags.

Yet, it is of essence to note that the coherence results
when including full labels require much further study. That
is because of our findings regarding AV engines’ usage of
several taxonomies in their labels (Section V-C). Another
factor related to the previous one is the existence of several
generic labels which could be reduced to just a single label for
each AV. We refrained from unifying these labels due to the
unclear labeling taxonomy that the AVs use as we mentioned
earlier. We limited our work to the comparison of full labels in
their original state because we lacked the knowledge of how
each AV engine’s labeling methodology is.

While AVCLASS2 is a great tool for identifying families
(as well as other categories), it is limited to a certain set of
families in its dictionary. Even with its expansion module and
the UNK pseudo-category which can help identify certain tags
that are not in the tool’s taxonomy nor the tagging rules, such
knowledge is quite limited for the research community when
it comes to closed-source tools like the AV engines as we
mentioned earlier in II-A. An extensive knowledge of each
engine’s set of tagging rules in addition to the families it uses
is a requirement to be able to add such rules to AVCLASS2’s
expansion module. Only in that case can a researcher rely
blindly on a preconfigured label unifying tool in identifying
family labels for custom-built datasets. Additionally, the high
Rand Index scores seen in the FAM curve in Figure 5 suggests
that whenever AVCLASS2 can identify the family for both
engines, there is a great similarity in the family clusters
between engines AV1 and AV2. This indicates that whenever the
industry keyplayers have a clear agreement on a famiy, they
tend to to classify its samples similarly. It also means that in
case a family is identified by both engines, family unification
using tools like AVCLASS2 is possible. The same conclusion
applies to the classes as seen in the CLS curve in the same
figure although it has slightly lower Rand Index scores. On
the other hand, we saw how the Rand Index dropped in the
curves FAM+LBL and CLS+LBL of the same figure whenever
the family/class could not be identified in any of the engines or
both. This shows that the use of AVCLASS2 or other similar

tools could have its unseen impact on the ML algorithm when
designing an ML based family classifier.

VII. DISCUSSION

Our study shows that current AV engines are unable to
provide meaningful family/class labels for a great portion of
Android malware samples. This is reflected in many of the
generic/vague labels as we showed in Section V-B. We are
able to confirm this conclusion based on the results of our
experiments which showed the low percentage of family name
extraction in the case of single coverage (cf. Figure 3) which
is even lower for cross coverage (cf. Figure 4). This could
be due to the vendor’s limited view, as explained in Section
III-A. Even though there is an ongoing collaboration between
vendors, we believe that they mainly focus their efforts towards
detecting ongoing threats to their users based on the markets
in which they are active. Although Google has a bird-eye view
on the Android malware status, which could help in improving
AV engines’ results, we failed to identify any involvement of
Google in the main threat collaboration platforms [9], [55],
[57]–[59]. The only collaboration platform it is involved in
the App Defense Alliance [151], which also includes ESET®,
Lookout® and Zimperium®. Out of these 3 companies, only
ESET® is on VT. Such an alliance allows these 3 to use Google
Play Protect to obtain and share samples. In fact, this might
be the reason why ESET-NOD32 has the best coverage in our
set.

On the other hand, AVCLASS2’s limitation might be par-
tially because of its Android FAM/CLASS dictionary. While it
includes an update module that allows for including unknown
tags, we did not use it because of the impracticality of
analyzing all the labels of the dataset. We have seen cases
of using label unifying tools, particularly AVCLASS, blindly
to build datasets [23], [113], and we believe that this practice
should be avoided by our community for several reasons. First,
we already know from Section II-C that some AVs use the
engines of other AVs. Also, Zhu et al. [140] discussed how
some AVs influence others in their flagging decisions. Thus, it
would be wise that these factors are taken into consideration
and that AVs that rely on 3rd party engines as seen in [56]
are treated as one along with those external engine.

Based on our analysis, we confirm the general strong
disagreement between AV engines with regards to the Android
malware ecosystem. We base that claim on two observations.
First, our AV industry’s report analysis uncovered the lack
of consensus on top families per year as shown in Table II.
We note that despite the scarce details that vendors provide,
we consider those reports as literature-based indicators about
the absent consensus. Second, we corroborate the previous
observation with the results of our experiments in Sections
IV,V and VI. For instance, the average flagging rate for single
AVs as seen in the diagonal of Figure 2 is 46%, which
drops to 31% for the cross flagging case between AV pairs.
Furthermore, in Section V-B, we provided evidence of how
some engines consider samples to be variants of the same
family, while others consider them as belonging to several



Fig. 5: FAM/CLS Commonality: AVCLASS2 detects common Family (FAM curve) or common Class (CLS curve) in labels from both
engines. FAM/CLS +LBL: AVCLASS2 families are complemented with the complete label if no FAM/CLS can be detected in both engines.
AV engines Rand Index values are lower whenever labels (LBL) are included

ones. All of these observations prove the extremely limited
agreement between AVs. This only means that these engines
are generally weak with regards to android malware detection
and consequently weaker with classification.

While the labels that our set of engines uses obey CARO’s
naming convention, the CARO convention itself is outdated.
AV vendors who are already collaborating on threat intelli-
gence (see Section II-A), need to work together on designing
a clear and well defined labeling convention. A new labeling
convention, even for generic labels, will help researchers
to dissect, study, analyze and understand PHAs with more
ease; something that will come to the benefit of the AV
vendors because their focus is geared towards detection. We
confirmed our conclusion of the AVs’ focus on detection rather
than classification after contacting a representative of one
of the AV vendors. He told us that although his company’s
analysts try their best to get accurate detection labels, the real
objective is to protect the users, which might eventually lead
to misclassifications.

Additionally, in the curves FAM and CLS in Figure 5, we
demonstrated how the coherence results for families as well as
classes were generally quite high among the engine pairs when
FAM, as well as CLASS, were identifiable in both of the AV
pair engines . This shows that vendors agree on well-defined
threats. Yet, we cannot disregard the fact that the percentage
of the samples whose family was obtained lied between 2%
in the case of K7GW and 82% in the case of F-Secure, with

four out of the 10 engines having a FAM extraction rate in
the 60% bin as seen in Figure 3. This is even worse in the
case of CLASS, whose values lied between almost 0% in the
case of both SymantecMobileInsight and Cyren and 61% in
the case of F-Secure; 3 out of the 10 engines lied in the 40%
bin. These values, for both FAM and CLASS, for sure prove
that engines tend to give generic, less deterministic labels and
focus their efforts more towards detection.

Moreover, given our knowledge that F-Secure relies on
Avira’s core engine [56], we found a difference of 8% in the
coverage as seen in Figure 2. Yet, this percentage rises up to
10% for family names and drops to 4% with regards to class
names (cf. Figure 3). We expected the percentages to be closer
to 0% rather than oscillating between 4% and 10%. We deduce
that even though vendors with rebranded engines use engines
of other vendors, they might have their own contributions
towards the rebranded engines to improve their own engine’s
performance. Another possible reason might be simply that the
engine versions that each of these AVs use on VT are not the
same.

A. Recommendations

The fact that AV pairs have much lower cross coverage
average than single coverage average is a strong indicator of
the infeasibility of blind label unification. This idea becomes
more substantiated after taking into account that the best AV
pair family intersection (ESET-NOD32,Ikarus) represents just



29% of the dataset, with this pair having the highest value
in cross coverage. The family intersection values are almost
evenly distributed among the 0, 10, 20 bins with the lowest
value being 0.07% (SymantecMobileInsight,K7GW). With all
these findings in mind, we advise the community to take
into account the following when building Android malware
datasets:

• Understanding the interdependencies among the different
engines and discarding results from redundant ones like
in the case of F-Secure and Avira

• Taking into account: (a) the tendency of AV engines to
give generic labels instead of family identifying ones and
b) the variability of generic labels e.g. Avira’s generic
labels: ANDROID/Agent.qzqlq, SPR/ANDR.Agent.cdhey,
Android/Spy.Agent.FI.Gen.

• Machine-Learning based family classification systems
that discard samples with generic labels, despite their
very high accuracy, would not stand in a real-world
scenario where there is non-stop influx of incoming
malware. In these systems, the classifier is fitted with
features extracted from the samples in the dataset and
would be greatly affected by changes to the structure
of that particular dataset. ML have been historically
tied to ground-truth non-changing samples like image
recognition and applying that to a continuous changing
field like malware detection/classification is challenging
[7]. Also, these classification systems cannot be compared
to AV engines, whose goal is detection rather than family
classification.

• Blind usage of label unification tools does not take into
account the variability in family names that AVs might
use for the same family; thus introducing noise into the
ML algorithm. For example, samples that were flagged
by Ikarus as part of the coogos family, have been majorly
flagged (80%) by ESET-NOD32 as belonging to the
kuogo family. We deduce that ESET-NOD32’s kuogo
is in fact Ikarus’s coogos. Yet, we are convinced that
this label equivalence requires a much deeper analysis
to be able to compare equivalent families from different
AVs. This phenomenon is even confirmed by the industry
[142], which indicated that different AVs give different
names to the same family. Using techniques like Rand
Index to measure similarity between label clusters of AV
families along side label unification is essential so as not
to introduce subtle noise in the classifier.

B. Limitations and Biases

In our study, we have been faced with several limitations,
which are:

• Lack of transparency and limited information from AV
vendors regarding data on malware families: We were
not able to obtain relevant information except from the
vendors on which we reported. Hence, the real-world
status of malware families might differ from our version.

• Lack of ground-truth for samples in our dataset: While we
tried our best to use previously flagged samples, we set

our initial threshold at 1 engine before rescanning them
on VT. The rescanning yielded a minimum of 5 flaggings
per samples and considered 300K samples as benign.
However, we cannot confirm that all of the samples in
the rescanned set are malware or that the labels in the
VT reports are 100% accurate.

• We lacked knowledge about the flagging influence among
the AVs for this particular dataset, especially that it
includes only Android samples. While Zhu et al. [140]
were able to identify relationships and dependencies
between several AV engines, we could not claim that
these interdependencies extend to our dataset.

• We were unable to study and analyze different generic
labels because of the different taxonomies used by each
AV. This affected our ability to extract any possible ex-
isting FAM/CLASS intelligence by updating AVCLASS2
with new family/class names, which of course could have
changed the output of the coherence experiments seen in
Figure 5.

VIII. RELATED WORK

With the aim of finding a way that allows comparing
classification results using various detectors, Maggi et al.
[152] studied the malware naming (in)consistencies of four AV
engines on a dataset of around 100K samples. After scanning
the samples on VT, they built the taxonomy tree of each
AV using patterns from the VT results. They divided the
samples into sets based on their assigned values for class,
family, platform, and variant (for ease, we use AVCLASS’s
categorization rather than the authors’). If the mapping of
any given set from AV vendors A and B is one-to-one, a
consistency exists. Yet, if samples of one set from A match
several sets from B, then it is a weak inconsistency. Similarly,
if the relationship is many-to-many, they consider this a strong
inconsistency. They found that overall consistency was better
among the variants compared to that of families, which goes
against the logical assumption that labels from different AVs
would agree more on higher level categories.

In [140], Zhu et al. studied a set of 14K files by querying
them on VT for one year and analyzing the results of 65
engines. They measured how individual engines flipped the
label of a file over time. They discovered that 50% of the
flips were very short-lived (hazard flips) as they tended to flip
again the next day. The final result was 1.7M hazard flips vs.
811K non-hazard ones, and that 64 engines out of 65 had flips.
They found that the threshold-based label aggregation, i.e. con-
sidered a sample malicious if flagged by more than t AVs, is
unexpectedly effective in allowing label dynamics only when t
is given a correct value unlike the more common threshold of
1 used in many research works. Regarding AV relationships,
there were 5 clusters that ranged from the size of 2 to 6 engines
with a similar label sequence pattern. Additionally, the authors
analyzed the commonly known reputable engines from other
works, showing that they are not necessarily the most accurate
ones.



Kadir et al. [20] discussed the disparity of labels in the
context of Android financial malware. They supported their
claim by discussing the Zitmo family, which was first ad-
dressed in Malgenome, and for which engines failed to provide
more specific labels even to one sample of that family and
instead provided generic labels. The authors made efforts to
build a curated dataset of android financial malware with
clear taxonomy and classification after checking the samples
themselves to avoid any bias.

Botacin et al. conducted a systematic study to identify
the challenges and pitfalls in malware research [25]. The
authors reviewed 491 papers from top security conferences
between 2000 and 2018. They provided a group of common
steps that are must-have for security papers: 1) Research
Objective Defintion, 2) Hypothesis Definition and Research
Requirements, 3) Solutions Design, 4) Experiment Design
and 5) Solution Evaluation. They classified the pitfalls into
20 different categories and identified a set of 5 challenges.
The research objectives that they determined based on their
analysis of the set of papers were 1) Engineering Solutions,
2) Offensive Techniques, 3) Observational Studies, and 4)
Network Traffic. This is slightly different than the set of
objectives that we identified though our set is based on a much
smaller collection of papers as well as being more focused on
Android.

Zhang et al. [153] proposed a hybrid representation learning
technique in which they involve not only the raw labels
retrieved from AV engines after querying VT, but also by
including other information: static analysis results and app
metadata. This work was motivated by the lack of knowledge
of how the engines decide on giving a certain label to a
specific sample. Their objective was to combat the confusion
caused when using label unification tools on samples that
have ”weak” raw labels. Weak labels maybe generic labels
that are immediately discarded by label unification tools or
maybe controversial labels in which the majority voting used
by the previously mentioned tools becomes less confident.
They mentioned that the vendors do not often use CARO and
CME conventions. Yet, we showed earlier that even with just a
variant in the label, an AV would still be following the CARO
standard. However, we agree with the authors of [153] that
such labeling is vague and does not allow for reliable analysis.
On the other hand, we note that in our study, we have shown
how such disagreement on family name might not even have
an impact because of the high similarity in the family clusters
for each pair. We are yet to know how true this is in the case
of family coherence values for N engines collectively; N>2.

Pirch et al. [154] developed a method, called TAGVET,
whose objectives is vetting tags from malware collections.
The method addresses the fact that most tags are automati-
cally generated rather than being manually assigned and that
sometimes, because of the automation, a misalignment occurs
between a tag and the sample’s behavior. TAGVET is based
on explainable ML through which it connects tags to the
behavioral pattern of a sample after running dynamic analysis.
The authors test their method on a Windows-only PHAs set

for three tag classes: 1) Sandboxing: based on reports after
running samples in Sandbox, 2) Family name extraction: based
on output of AVCLASS, and 3) Behavior-based clustering:
the technique is based on extracting tuples of system calls
and arguments, then using complete-linkage clustering. The
accuracy results for the three tag classes ranges between 92%
and 97%.

IX. CONCLUSION AND FUTURE WORK

Both the academic and industrial communities rely on
the notion of malware family when analyzing emerging or
prevalent Android threats, and when working with Android
malware datasets. In this work, we explored the usage of
malware classification in both communities. Also, we studied
the limitations associated with the use of available malware
classification services for determining the family of Android
PHAs. This is a critical step for researchers when building
labeled datasets as they represent the ground truth when
training classifiers. Our analysis of 2.5M malicious Android
samples reveals that the detection coverage of current AV
engines is low and that engines often resort to generic family
labels. We explored the extent to which different AV engines
agree upon flagged samples and their families and found that
the level of agreement is quite low, with the best agreement
levels being at 52% and 29% consecutively. The coherence
results, especially for family, suggest that the industry has a
general agreement on those threats that are well-defined. Based
on our study, we were able to provide recommendations for the
labeling process (see Section VII-A) to researchers who plan
to build their own datasets. While we measured the coverage
and family and class coherence for AV pairs, our goal is to
extend these experiments to involve more engines. Besides,
we believe that the study of the generic labels and the main
keywords that engines use as generic ones or to represent
generic threats is necessary to deeply understand the basis
on which these labels are generated. Moreover, based on our
observations of the usage of numbers as potential family names
and the interchanging of uppercase and lowercase in the FAM
part of the label, we would like to study the automatically
generated labels that are related to possibly unseen families
and those that are generated because of the engines’ ability
to attribute them to previously seen families. Finally, taking
into account the lack of consensus, we would like to carry out
a study that measures the possible improvement of outputs
of label unifying tools by involving real time behavioral
monitoring to enhance threat intelligence, based on concepts
used in recent studies on relevant Windows malware [154].

PAPER DISTRIBUTION OVER CONFERENCES

The analysis of papers from mentioned conferences are
found in Table VII.
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