
ObfSec: Measuring the Security of Obfuscations from a Testing Perspective

Héctor D. Menéndez1, Guillermo Suárez-Tangil

King’s College London, IMDEA Networks Institute

Abstract

Code obfuscation protects the intellectual property of software. However, systematically altering the control-

and data-flow of a program can deteriorate the security of the resulting program. There are a wide-range of

obfuscation methods available that alter the layout of the program in different ways. These modifications

can introduce bugs in the program or modify the nature and the severity of an existing ones.

We propose a novel strategy, called ObfSec (Obfuscation Security), to understand the implications behind

obfuscating software. ObfSec starts by detecting errors on software and exposes how the obfuscation can

change the nature of those errors, looking in particular at transformations that turn software bugs into a

exploitable vulnerable program. Our results, on a corpus of around 70,000 programs and obfuscations, show

that obfuscation can deteriorate the security of a program.

Keywords: Obfuscations, Security, Testing

1. Introduction

Code obfuscation is a software protection technique that aims at frustrating automatic or manual code

analysis using deliberately made transformations to the control- and data-flow of a program (Garg et al.,

2016). Millions of different software applications leverage obfuscation to conceal the intellectual property of

their code, and protect themselves from different reverse engineering and analysis strategies (Wang et al.,

2018a). However, although obfuscation is helpful to protect intellectual property, it also affects the quality

of the software (Chen et al., 2016). There are two reasons to this. First, the applied transformations can

be faulty and thus bugs are introduced into the program. Second, the original program might contain bugs

that are carried to the obfuscated program. Although the original bugs might not necessarily be exploitable,

the transformations that are made by the obfuscation framework can expose those bugs differently —

turning some of them into exploitable bugs. One can also find a combination of the aforementioned reasons.

Consequently, the obfuscation process generates unreliable control- and data-flow sequences that poses an

additional threat to the reliability of the program.

∗Corresponding author
Email addresses: hector.menendez@kcl.ac.uk (Héctor D. Menéndez), guillermo.suarez-tangil@imdea.org (Guillermo

Suárez-Tangil)

Preprint submitted to Expert Systems with Applications July 26, 2022

Related works have been evaluating the security of obfuscation engines as a way to measure their strength

against reconstruction (i.e., de-obfuscation) (Schrittwieser et al., 2016). Despite the obfuscation process may

aggressively change a program (Hammad et al., 2018), little efforts have been placed on understanding the

reliability of the obfuscation life-cycle from a software quality perspective. Approaches such as symbolic

execution (Banescu et al., 2016a) have tried to deal with obfuscation. However, these techniques have issues

to scale to bigger and complex programs because of path exploitation (Banescu et al., 2016b). Furthermore,

symbolic execution and other similar techniques underperform with obfuscation (Ma et al., 2014). Instead,

recent works suggest that fuzz testing can deal with obfuscated programs (Jung et al., 2019; Güler et al.,

2019) (both published in Usenix’19). While authors in (Jung et al., 2019) show that obfuscation does not

introduce a ‘resistance’ to the fuzzer, it is not clear to what extend it can be used to improve our knowledge

about the software quality. Also, for the best of our knowledge, the literature lacks on a systematic study

assessing whether (and how) the — implementation of an — obfuscation algorithm degrades the resulting

quality of the software.

In this paper, we introduce the first study looking at the life-cycle of the obfuscation process from a testing

perspective. We measure the security of a program before and after it is obfuscated, which in turn is used

to model to what extent the obfuscation process can lead to the identification of unknown vulnerabilities.

For this, we design four novel measures that integrate into a processing pipeline that we call ObfSec. These

measures quantify: i) the resistance, ii) the exploitability iii) the stability, and iv) the complementarity of

an obfuscation. First, the resistance measures the effort required to find crashes. Second, the exploitability

shows the likelihood that the implementation of an obfuscation will introduce a vulnerability into a program.

Third, the stability measures how transferable are the observations made in an obfuscated program to the

original program. Finally, the complementarity shows how much we learn, in terms of unmasking crashes

and exploits, from fuzzing an obfuscated program on top of what we can infer from the original program.

Altogether, these four measures describe how reliable the obfuscation process. Challenging the reliability

of the obfuscation process is particularly relevant in the presence of adversarial conditions. In particular,

we assume that malicious adversaries may try to exploit existing vulnerabilities in obfuscated programs by

providing especially crafted inputs unexpected to the program.

In summary, we presents the following contributions:

• We propose a new methodology based to evaluate the security of an obfuscation engine. We study

20 state-of-the-art obfuscations from a range of open and commercial tools. We identify that the

implementation of the AntiBr obfuscation is fundamentally flawed.

• We propose a number of novel measures to profile the life-cycle of errors during the obfuscation

process. We apply our measures to analyze 646,854 crashes in 70,137 programs. We show that the

obfuscation does not make the fuzzing process harder. To the contrary, we unexpectedly discover that

2

the obfuscation process can effectively be used as a testability transformation.

• We introduce a triage system to prioritize the analysis of crashes. Our triage system leverage on a

number of heuristics that quantify the severity of the crash. In total, we study 198,468 critical crashes

and track these cases to the obfuscation engines. We show that the combination of certain errors and

specific obfuscations is more prone to generate exploitable crashes.

The rest of the paper is organized as follows. Section 2 motivates the problem of studying the bug

life-cycle. Then, Section 3 presents ObfSec. For the evaluation of our methodology, shown in Section 5, we

select a corpus of programs and obfuscations explained in Section 4. Our results are discussed in Section

6. Finally, review the literature and present our conclusions.

2. Motivating Examples

This section introduces the background that motivates our work, together with a motivating example

that shows how the use intellectual property protections, in the form of obfuscation, affects the quality of the

program. In this example, the obfuscation masks an error that would be exposed in the original program.

Background. Obfuscation has generally been used in compiler testing to evaluate the compiler’s behaviour.

A common technique is metamorphic testing with differential analysis (Tao et al., 2010). The obfuscation

process turns the program into a semantically-equivalent version, altering code and variables. Differential

testing then compares the output of both versions (the original and the obfuscated program) to identify

issues in the compiler. These issues correspond with program crashes. However, there are two underlying

assumptions with this compiler-based testing: i) the original program is free of bugs, and ii) the obfuscation

process does not introduce crashes. In order to understand the security of obfuscation, we explore what

happens when either assumption is not met. Thus, we work with buggy programs and explore a wide range

of obfuscations. On the contrary, we assume that the compiler is reliable and thus we work with a well

tested version as detailed in Section 4.

Motivating example. We observe that the obfuscation process can mask errors. For example, we consider

layout obfuscation — one of the simplest forms of obfuscation that changes variable names. Figure 1 shows

two programs that are exactly the same program but for the names of the variables. The original program

(in the upper part of the listing) is obfuscated with the Num obfuscation of the cobfusc tool.1 Given a unit

test that passes “13133 3” as input, we observe that the original program produces a segmentation fault in

line 7. However, the equivalent in line 18 does not produce a crash and the program finishes normally. Both

programs start initializing the loop boundary n and q1, respectively. The reminder variables are initialized

to 0. After the program has been looping for a while, the positions of the arrays ar (lines 7) and q13 (line

1https://manned.org/cobfusc/3dfcb129

3

18) are both out of bounds. This means that both programs have the same bug despite that the same unit

test produces different results. Due to the effect of the layout obfuscation, the compiler returns two runtime

programs with the memory variables sorted in different order as shown in Figure 1. This happens for both

GCC and Clang. After analysing the stack with GDB, we see that the issue lays on the way in which the

end-loop variable n (q1 in the obfuscated version) is accessed. In particular, we see from the memory layout

that the original program sets n before the array, while the obfuscated program sets q1 after. When the

array is overflowed in the obfuscated version, q1 is rewritten to 0 and the program ends. In this example,

an attacker could purposely craft an input that would overwrite q1 to loop for ever.

Through this motivating example, we see that obfuscating a program with a bug has an impact in the

way the program can be further exploited.

Motivation. Even the most simple obfuscation can influence the way programs behave. This has an

important impact on software testing, as the inputs in one domain can expose crashes that are otherwise

masked or does not exist in the other domain. Thus, we highlight that: 1) it is paramount to choose the

right algorithm when obfuscation is part of the development life-cycle; and 2) testing both the obfuscated

program and the original one can provide a better overview of the security of the program.

In what follows, we show the effect of following these advices in a practical way, presenting a method-

ology called ObfSec. Our aim is to understand the relevance of crossing tests between a program and its

obfuscations. This will show how semantic equivalent transformation can change the behaviour of crashes,

just by focusing on the crashes that are produced either on the original or the obfuscated version.

3. ObfSec: The Security of Obfuscation

ObfSec quantifies the security an obfuscation. As a by-product, our methodology allows to identify when

an obfuscation system is fundamentally flawed.

ObfSec seamlessly integrates four measures into a processing pipeline. On the one hand, these mea-

sures focus on independent properties of obfuscated programs, like: a) the effort required to find crashes

(fuzzibility), and b) the likelihood that an obfuscation engine will introduce a vulnerability into a program

(exploitability). Both relate to the reliability of an obfuscation engine, but they provide complementary

angles. The fuzzibility is related to finding crashes while the exploitability measures their severity.

Then, ObfSec devises an additional set of measures comparing the obfuscation with the original program

to quantify: c) how transferable are the observations made in an obfuscated program to the original program

and vice versa (stability), and d) how much we learn, in terms of unmasking crashes and exploits, from

fuzzing an obfuscated program on top of what we can infer from the original program (complementarity).

Related work refers to testability transformation when modifications in a program help in the testing pro-

cess (Harman et al., 2004).

4

1 int i,n,p1,l,r,ar [2][101];

2 int main(int argc , char *argv []){

3 scanf("%d%d",&n,&p1);

4 for (i=0; i<n; i++){

5 scanf("%d%d",&l,&r);

6 ar[0][i]=l;

7 ar[1][i]=r;

8 }

9 return (0);

10 }

11 -------------

12 int q0,q1 ,q3,q8,q9 ,q13 [2][101];

13 int main(int argc , char *argv []){

14 scanf("%d%d",&q1 ,&q3);

15 for (q0=0; q0<q1; q0++){

16 scanf("%d%d",&q8 ,&q9);

17 q13 [0][q0]=q8;

18 q13 [1][q0]=q9;

19 }

20 return (0);

21 }

&q13 = (int (*)[2][101]) 0x555555755060 <q13 >

&(q13 [1][101]) = (int *) 0x555555755388 <q1>

&(q1) = (int *) 0x555555755388 <q1>

&ar = (int (*)[2][101]) 0x555555755080 <ar >

&(ar [1][101]) = (int *) 0x5555557553a8

&n = (int *) 0x555555755064 <n>

Figure 1: Example of a program and its obfuscation where the variable’s order is changed in memory. The bottom shows the

GBD execution of the example, showing the memory position of the main variables affecting the masking process.

5

The fuzzification and exploitability measures relate to the obfuscation itself and are independent of

the original program. On the contrary, stability and complementarity establish the relationship between

the obfuscation and the original program, measuring how much overlap there is terms on crashes and

vulnerabilities observed.

Our processing pipeline has three steps: generation, triage and cross-testing as shown in Figure 2. Given

a program under test, the first step is creating a number obfuscations using a wide range of algorithms. We

consider the program and its protected version as Subjects Under Test (SUTs). Our system then generates

inputs for all SUTs in the first step. Here, we use a fuzzing system generating a set of inputs, or test

suite, for each subject, i.e., for each program and any other executable resulting from the obfuscation of

the original program. When the program is vulnerable, certain inputs will result into a crash. Our triage

process measures the severity of the crash, using heuristics to identify exploitable crashes. Our heuristics take

into account the type of crash (e.g., segmentation faults, illegal instructions, or floating point exceptions) to

quantify how exploitable is the program. These two steps allow us to measure fuzzification and exploitability

of the engines. Inputs that resulted in a crash or exploit are then cross-tested with the original program and

its obfuscation in the cross-testing phase. This step allows us to compute the stability and complementarity.

As a result, developers can prioritize fixes depending on the specific copyright protection they require.

ObfSec

Initiation

Generation

Fuzzibility

Triage

Exploitability

Cross-Testing

Instability

Complementarity

Original

Obfsuscation

Ori Crashes

Obfs Crashes

Ori Exploits

Obfs Exploits

Original

Obfuscation

Original

Obfuscation

Figure 2: ObfSec process. It is divided in three phases: the generation phases that find crashes, the triage that checks their

exploitability, and the cross-testing that determines their stability and complementarity.

3.1. Generation phase

Through a fuzzing system, the generation phase provides the initial set of crashes for a corpus of programs

and their obfuscations. From this initial set, we measure the effort of the fuzzer to find crashes inside the

code, namely fuzzibility.

Let P be a program andO(P) the obfuscation of program P with algorithmO. The generation starts with

6

a corpus of programs CP and their obfuscations CO(P), also known as SUTs (Subjects Under Test). Then,

applying fuzz testing, we create a test suite per program, called PT , and an equivalent per obfuscation, called

O(P)T . The fuzzer starts with the same set of seeds per program, i.e., initial inputs, and runs for the same

amount of time in all versions of the program. Providing the same initial seeds instead of complementary

ones is a common practice in the literature (Klees et al., 2018) and relates to our interest of using the

corpus to measure how fuzzible the code is. The works of Jung et al. (Jung et al., 2019) and Guler et

al. (Güler et al., 2019) motivate this measure. Jung et al. intuitively show that fuzzers are effective against

LLVM-based obfuscations as well as different packing systems. Similarly, Guler et al. (Güler et al., 2019)

also show this on Tigress obfuscations (Güler et al., 2019). However, the previous works do not provide a

specific metric to measure the effectiveness, which is what we do next.

From PT and O(P)T , we select only the inputs that produce crashes on P and O(P), called PC and

O(P)C , respectively. We primarily consider system crashes and divide them into the following categories:

1. Segmentation fault: the program writes in a memory section that is not available in its memory

space.

2. Illegal Instruction: the program tries to execute a malformed, unknown or unauthorized instruction.

3. Corruption: the program is trying to manipulated memory associated with corrupted pointers.

4. Floating Point Exception: a test produces an invalid floating point operation, for instance, a

division by zero.

5. System Timeout: a test execution exceeds the available execution time allocated to the program.

6. Out of Memory: a test execution exceeds the available memory allocated to the program.

We define our fuzzibility measure in terms of the total crashes detected during the fuzzing process over

the size of corpus:

Fuzzibility(C,O) =

∑
O(P)∈CO(P)

|O(P)C |
|CO(P)|

. (1)

The fuzzibility can be normalized by applying Equation 1 to the original corpus with no obfuscation. Fuzzi-

bility opposes fuzzification. When fuzzibility is low, fewer crashes can be found during the fuzzing process,

therefore, the obfuscation is more resistant. On the contrary, it is high when the resistance to fuzz the

non-obfuscated version of the program is similar to the resistance presented by the obfuscated program.

Likewise, it is also high when fuzzing the obfuscated program displays novel crashes.

3.2. Triage phase

Our methodology relies on a triage that allows our system to prioritize the most critical crashes. For this,

we consider a discrete function that returns whether a crash is exploitable or not. As this is an undecidable

problem, we leverage a number of heuristics to make a prediction. Our heuristics relate to the most common

type of exploits and are described as follows:

7

1. Destination Address Violation (DestAv): This heuristic looks at crashes that might have gain control

of a ‘write’ address. This happens when the crash appears on an address that is known to belong of

the destination operand of an instruction.

2. Branch Access Violation (BranchAv): This heuristic looks at crashes that might have overwritten

branch instructions that could hijack the control flow of a program.

3. Return Address Violation (ReturnAv): This heuristic relates to crashes that might have been pro-

duced due to stack a corruption. This happens when the return instruction is overwritten as result of

a crash.

4. Segmentation Fault on PC (SegFaultOnPc): This heuristic looks at violations of the address that

stores the Program Counter (PC). This happens when a branch instruction is invoked with a crafted

argument, or the issue causing the crash might have attempted to overwrite beyond the memory

boundaries. This exploit gives an attacker control on the program flow.

5. Stack Corruption: This heuristic shows whenever a crash has corrupted the stack of the program.

This is triggered when the return address in the stack does not match with the bounds of the process’

address space. This is also triggered when the stack pointer addresses a location beyond the stack

map. When there is an stack corruption after a crash, the program is generally exploitable.

6. Heap Error: This heuristic shows that a crash has corrupted the heap of the program. This is

generally triggered when the program is executing a heap function over an address that is not in the

right bounds. For instance, when calling to free() over a pointer that has been “smashed”. This also

relates to buffer overflow attacks.

7. Bad Instruction: This heuristic relates to generic cases where a crash relates to an instruction that

is malformed and/or privileged. This might mean that attackers can control the program’s flow if they

know how to overwrite the malformed instruction.

Based on these heuristics, we then select from PC and O(P)C only crashes that are exploitable, PV and

O(P)V , respectively. This is used to extract a measure that estimates the exploitability of a corpus of

programs C given O:

Exploitability(C,O) =

∑
O(P)∈CO(P)

|O(P)V |∑
O(P)∈CO(P)

|O(P)C |
. (2)

This equation defines the percentage of crashes that are exploitable, therefore it is already normalized.

Nevertheless, its comparison with the original program’s exploitability relates to the crash triage as it

appears after the obfuscation. This is used to provide a notion of how exploitable a program can be when

it is obfuscated with a given algorithm. High values of this metric are considered more relevant. This

means that the corpus of programs C tested with this metric are more prone to be exploited after using the

obfuscation engine O.

8

3.3. Cross-Testing phase

This phase studies the next step of the obfuscation life-cycle. Here, ObfSec checks whether the original

and the obfuscated test suites are equivalent, opposites or complementary.

For this, we apply cross-testing: we take the crash test suite of P (PC), and the equivalent of O(P)

(O(P)C) and run them on the opposite program. Formally, we apply P [[O(P)C]] and O(P)[[PC]]. The

rationale behind cross-testing is as follows. The obfuscation process is supposed to generate a semantically-

equivalent program. Thus, the same input should generate the same result in the original program as in any

of its obfuscations. When this is not met, it means that either (1) the obfuscation process has introduced

an error or that (2) an existing error has been masked as shown in Section 2. Alternatively, (3) one input

can generate a change in the type of crash and this phases also explores this.

We introduce three ways to understand the ability of the program to continue to function after the

obfuscation process, namely stability of the obfuscation. In particular, we look at how the crashes distribution

changes with respect to the testability of programs. For this, we first look at the test suites created in the

generation phase (Section 3.1). Considering the probability of program errors as a probability distribution,

we have four distributions. Two distributions from the program error probability on the original program

and the equivalent on the obfuscated program. These can in turn be produced either by the test suite created

in the original or the obfuscated program. When combined together, we have the following distributions:

p = P [[PC]], q = O(P)[[O(P)C]]

px = P [[O(P)C]], qx = O(P)[[PC]]

where the weight of each distribution is the probability of a type of crash after applying the test suite. This

is equivalent for exploitable crashes as given by our triage phase (Section 3.2).

Initially, ObfSec checks how stable is the original test suite in the obfuscated program (qx), especially

considering that the obfuscated program is thought as final version of the software. This measure, called

instability, evaluates how efficiently qx approximates the probability distribution of crashes on the original

program (p). This is literally the Kullback-Leibler (KL) divergence between p and qx over the original test

suite (PC), and it is defined as:

Instability(O) = KL(p||qx) =
∑
i∈TC

p(i) log
p(i)

qx(i)
, (3)

where TC represents the types of crashes. When the divergence is 0 or close to 0, it means that the distri-

bution of crashes in the original program and the obfuscated one is the same — therefore, the obfuscation

is stable. As the divergence is always positive by definition, higher values capture uncertainty on the testa-

bility. This is, when the obfuscation can not provide information about the original program. The stability

can either apply to crashes and vulnerabilities by restricting the test sets.

9

Similarly, we consider the opposite scenario: applying the test suite created for the corpus of obfuscated

programs to the original program (px). This intends to understand those cases where errors have been

masked (c.f., the motivating example in Section 2). Effectively, this concept checks how well the original

program can approximate the distribution of errors in the obfuscation (q||px), and we call it inverse

instability. Formally,

Inv. Inst.(O) = KL(q||px) =
∑
i∈TC

q(i) log
q(i)

px(i)
. (4)

Finally, the obfuscation process can guide fuzzers in the process of discovering errors that were not

originally expose by the testing process, serving as testability transformations (Harman et al., 2004). In

this case, the obfuscation mechanism complements the testing process when the obfuscation’s test suite

can detect specific types of errors that are otherwise resistant in the original testing. We also measure this

complementary behaviour in terms of probability distributions, but, in this case, the distributions are related

to both test suites applied to the original program alone. This way we can understand, giving the original

test suite, how much the obfuscation test suite can complement it (p||px). This is similar to the instability,

but in this case, the higher the Kullback-Leibler divergence between both, the better the guidance (i.e., the

better the obfuscated test suite complements the original). We call this measure complementarity:

Complem.(O) = KL(p||px) =
∑
i∈TC

p(i) log
p(i)

px(i)
. (5)

These measures help developers to decide which software protection has a larger impact in securing

their software. For all the divergences, when the denominator is 0, we add a perturbation of 10−10. The

following evaluates how our proposed measures help to understand the implications of using several well-

known obfuscation systems. We also show to what extent software protections can be used as a testability

transformations tool.

4. Experimental Setup

Central to the design of a suitable experimental setup is the definition of a fine-grained set of research

questions. Thus, in this section we first provide a break down of our objectives into three block of questions

(§4.1). Then we detail our experimental setup by describing the obfuscation strategies we leverage (§4.2),

introducing our the fuzzer we use (§4.3) and our dataset (§4.4). Finally, we detail the error codes and type

of exploits our implementation covers (§4.5). Validating ObfSec metrics requires a deep set of experiments

that provide a complete and general perspective of the obfuscation effects on multiple security scenarios.

To achieve this aim, we will cover an extended set of cases showing how ObfSec generalize to different

obfuscation engines and compilers, and how the different transformation relate to crashes and exploits.

10

4.1. Research Questions

As ObfSec depends on the fuzzification abilities of an obfuscation, we start asking: RQ1.1: Is the

obfuscation disrupting the testing process by being resistant to fuzzers? If that were the case, the fuzzer

would not be able to detect new crashes on obfuscated programs, and ObfSec would be devoid. Answering to

this question requires evaluating the difficulty underlying the fuzzing process, which includes understanding

how efficient the test suits are in finding (exploitable) crashes. This immediately leads to ask, RQ1.2: are

programs that are obfuscated with a given algorithm more prone to be exploited when compared to other

algorithms?

This block of questions relate to the generation and triage phases as described in Section 3.1. We later

leverage the fuzzibility and exploitability measures to answer these questions. The higher the fuzzibility,

the lower the resistance to testing. Depending on the resistance we find, the fuzzer will detect errors in the

original program or in the obfuscated program. We use our methodology to evaluate different obfuscations

strategies over to a significant program corpus.

Once we verify that we can leverage the generation phase to learn about the fuzzibility of an obfuscation,

we prompt the following questions: RQ2.1: How can an obfuscation mask crashes, i.e., how is the instability

of the obfuscation? RQ2.2: How can an obfuscation be used to estimate or complement the testing process

of a program? Once the test suites are generated, ObfSec cross-tests the original and the obfuscated programs

to understand the instability and testability of obfuscations from the crashes. This also provides information

about how a crash evolves under specific types of program transformations. We ask two similar questions

regarding the triage phase: RQ3.1: How do obfuscations conceal exploits in terms of instability? RQ3.2:

How well can obfuscations unmask exploits as testability transformations?

Finally, in order to understand which crashes and exploits require more attention after the triage and

obfuscation, we need to understand how they can change their nature. Then, we ask: RQ4: Are the

crashes and exploits following specific transformation patterns for different unstable obfuscations? Crashes

or exploits whose transformation patterns are noisy and unpredictable will require more attention in the

bug fixing process that those whose transitions are more static.

4.2. Obfuscation Engines and Strategies

For the evaluation of our ObfSec methodology we have selected four obfuscation engines. These engines

have different properties and strategies, but some of them are common, such as literal modifications and

arithmetic transformations. For our experiments, we consider four state-of-the-art tools for C commonly

used in other works related to obfuscation (Chen et al., 2016): As our experiments focused on C code, we

select the most established tools: i) Tigress, ii) LLVM-O, iii) a commercial tool called Stunnix (CXX), and

iv) a system tool called CObfusc. Our experiments also compare across compilers, with Clang for the LLVM

11

obfuscations and GCC for the reminder. We use stable releases of the compilers — 6.3.0 for GCC and 3.8.1

for Clang.

Overall we explore 20 different transformations from the four engines we leverage. The first engine

that we consider is Tigress. This comprehensive engine has several different obfuscation strategies: 1)

Injection of predicates that are never visited during the program execution (InitOp), and also 2) those using

directly system variants (UpOp), 3) virtualization (Virtu), 4) implicit flow (ImplFl), 5) entropy manipulation

(InitEn), 6) manipulation of branches (InitBr), 7) anti-branch analysis (AntiBr), 8) anti-Taint analysis

(AntiTa), 9) anti-alias analysis (AntiAl), 10) encoding of literals (EncLit) and 11) encoding of arithmetic

operations (EncAri). We also apply a system tool called C-OBFUSC that manipulates literals either with 12)

numbers (CobfsNum) or 13) words (CObfsWord). We also test a known commercial tool called Stunnix, using

the following obfuscations: 14) the first reduces the names to the shortest possible ones (cxxobfShortest),

15) the second uses encoding of strings with hexadecimal codes (cxxhexchar), 16) and the last one transform

constants in a sum of three elements (cxxobfSum3). Finally, the last obfuscation engine that we apply is

the LLVM-Obfuscation using four different transformations: 17) the first replaces arithmetic instructions

(llvmsub), 18) the second flatters the controls flow graph (llvmfla), 19) the third splits basic blocks

(llvmsplit), 20) and the last bogus the control flow adding basic flows before functions calls with opaque

predicates (llvmbcf).

The rationale behind our choice of transformations is to cover a wide spectrum of transformations

described by Collberg et al. in (Collberg et al., 1997), from a range of open and commercial tools.

4.3. American Fuzzy Lop

This work uses the American Fuzzy Lop (Zalewski, 2019) to generate the test. This tool starts with

an initial test corpus or seeds. The tool instruments the program in compilation time adding instructions

to measure coverage. It sets the seed into a queue, and run them to evaluate the initial coverage. Then,

the fuzzer applies different mutations to a queue of inputs in order to identify new branches and improve

coverage. Those tests that identify new branches are added to the queue. This process continues until the

user stops it.

4.4. Dataset

For our ObfSec experiments we select a corpus of 7,436 real programs called codeflaws. These program

have been designed for different programming competitions called Codeforces2 (Tan et al., 2017). The

dataset comes with an initial test suite per program that is provided for the competition goal, which it is

then used as seed in the fuzzing process. This will help to stress different possible behaviors and detect

2https://codeflaws.github.io and http://codeforces.com

12

https://codeflaws.github.io
http://codeforces.com

Error Code Message Example Meaning

0,1 Any in Stdout/Stderr User-made

124 Any in Stdout/Stderr Timeout

132 Illegal instruction Unknown or unauthorized instructions

134 Double free or corruption Free unattached memory

136 Floating point exception Erroneous Arithmetic Operation

137 Execution killed Out of memory

135,139 Segmentation Fault Illegal memory access

Table 1: Common errors found in the original program

potential crashes faster. The average size of the programs is 75 LoC, which facilitates the generation of a

wide range obfuscations for the programs and a comprehensive fuzzing in a timely manner. For the analysis,

we focus on the programs that contain crashes, from the corpus, 3,739 programs. Overall we have 70,137

programs for analysis after applying the obfuscations described in Section 4.2. These programs have 646,854

crashes from which 198,468 are exploitable (Section 5.1). The average lines of code per program is 4,366.

4.5. Error Codes and Exploits

We study program bugs interpreting execution crashes. For this, we look at the signals raised by the

operating system to terminate the program. These are very meaningful signals to understand the nature of

the crash. Table 1 shows a map between the signals we study and the crashes described in Section 3.1.

The main signals that we consider are: illegal instruction or corrupted binary (SIGILL 132), double

free exception or corruption (SIGABRT/SIGIOT 134), bad memory access (SIGBUS 135), floating

point exception or integer overflow (SIGFPE 136), explicitly killed or memory exceeded (SIGKILL

137), and segmentation fault (SIGSEGV 139).

A crash may lead to the exploitation of a vulnerability in the program. In order to quantify the criticality

of a crash, we use a triage process. Our triage process leverages crashwalk3 (Wang et al., 2018b) to assess

every crash based on the heuristics described in Section 3.2. The vulnerabilities identified by crashwalk are

the ones defined in Section 3.1.

5. Evaluation

We leverage ObfSec to understand the security and reliability of obfuscations. The following shows our

main outcomes.

3https://github.com/bnagy/crashwalk together with GDB exploitable

13

https://github.com/bnagy/crashwalk

5.1. Fuzzing the Obfuscation is not Challenging

We first study the results of applying AFL during 5 minutes per program to the corpus of 70K original

and obfuscated programs. Table 2 shows a summary of our results. Recall that the fuzzer starts applying

the same set of inputs for both the original program and its obfuscations. We next look at how ObfSec

performs when using GCC and LLVM and, later, we study its results.

GCC: We see that that 3,739 programs compiled with GCC have crashes, with a total of 44,950 unique

crashes. From these, our triage system identifies 14,873 of them as exploitable. Applying different obfus-

cations to these programs, we expect some resistance during the fuzzing testing process. However, this

resistance is only manifested with specific obfuscations, as in several cases the number of crashes is simi-

lar. The most relevant cases are discussed as follows. On the one hand, we see that AntiAl obfuscation

significantly reduces the fuzzibility, also reducing the number of programs containing crashes. Contrary,

EncAri does not significantly reduces the number of programs containing crashes. However, it reduces the

fuzzibility to half of the original value. On the other hand, InitEn and Virtu reduce the number of pro-

grams with crashes to under 3,000. Virtu is especially interesting as it also reduces the fuzzibility to a

third with respect to the original corpus. Finally, both CObfusc and CXX have similar fuzzibility results than

the non-obfuscated version. This is because the obfuscation engines only transform the literals inside the

programs. They also have the highest crash intersection with the original test suite. Only the Shortest

obfuscation reduces the number of crashes found.

LLVM: We observe that changing the compiler strongly affects the capabilities of the fuzzer to detect

crashes in programs. In particular, AFL only detects 17,758 crashes and reduces the number of programs

with crashes to 3,485 with respect to the original corpus compiled with LLVM. Besides, the fuzzibility is

smaller than a half of the original. On the contrary, LLVM obfuscations increases the number of crashes —

especially for BCF and Split obfuscations. On another note, AntiBr generates a crash for every input. This

relates to the error in the function that redirects the branches as discussed in Section 2. Thus, all crashes

produce the same error, a segmentation fault. Nevertheless, as Table 5 shows, these crashes has different

exploitability.

Fuzzibility: When looking at the resistance, results show that most of the obfuscations are not helpful to

the fuzzification process or to anti-fuzzing systems (Jung et al., 2019; Güler et al., 2019). Only Virtu can

be considered as a potential fuzzification. Nevertheless, this obfuscation only makes the process of detecting

crashes 3 times harder, while state-of-the-art fuzzifications make this process, at least, 40 times harder (Jung

et al., 2019).

In terms of exploitability of these crashes, EncAri finds less crashes. However, their exploitability is

higher than the originals (42.02%). This suggests that the obfuscation reduces the security of the program.

Similarly, EncLit is also incrementing the exploitability, although it is not significant. On the majority of

the cases, Tigress reduces exploitability, especially on AntiAl, which can reduce it from 33.09% to 16.50%

14

Method Prog.

w/

Crashes

Total

Crashes

Total

Exploits

Crash

Intersec.

FuzzibilityEx-

ploit.

Original GCC 3739 44950 14873 - 12.022 33.09%

Tigress AntiAl 3108 32635 5384 1897 10.500 16.50%

Tigress AntiBr - - - - - -

Tigress AntiTa 3369 38322 12199 2859 11.375 31.83%

Tigress EncAri 3358 20464 8599 1054 6.094 42.02%

Tigress EncLit 3364 40102 13856 2818 11.921 34.55%

Tigress ImplFl 3366 40478 13425 2956 12.026 33.17 %

Tigress InitBr 3207 34873 7678 2269 10.874 22.02%

Tigress InitEn 2950 30580 7705 1805 10.366 25.20%

Tigress InitOp 3226 34894 7238 2427 10.816 20.74%

Tigress UpOp 3017 34884 7511 2199 11.562 21.53%

Tigress Virtu 2619 11067 2410 491 4.226 21.78%

CObfs Num 3567 40427 13288 3589 11.334 32.87%

CObfs Word 3467 42257 13911 3520 12.189 32.92 %

CXXobf Shortest 3377 34554 10650 3318 10.232 30.82%

cxxobfHexchar 3661 39382 12573 3790 10.757 31.93%

cxxobfSum3 3674 39030 11944 3809 10.623 30.60%

Original LLVM 3488 17758 7200 - 5.096 40.55%

llvmsub 3485 17552 7334 1741 5.032 41.78%

llvmfla 3201 16024 6639 849 5.006 41.43%

llvmbcf 3429 18485 6397 1512 5.391 34.61%

llvmsplit 3465 18136 7654 2122 5.234 42.20%

Total 70,137 646,854198,46845,025 - -

Table 2: Fuzzing results for the original programs and their different obfuscations. The columns shows the fuzzing results in

terms of crashes found and intersection of their triggers.

15

and the number of exploits to a third of the originals. Other obfuscations in Tigress like InitOp, UpOp

and Virtu also show robustness in terms of exploitability reducing both, total exploits and exploits per

crash. Virtu significantly reduces the total number of exploits to a sixth of the non-obfuscated version.

For CObfs and CXX results are similar in terms of crashes. In LLVM, BCF reaches the minimum on exploits

and exploitability while Split increments these values over the threshold of the original program (454 more

exploits and 1.65 points more of exploitability).

RQ1.1: ObfSec is viable as different obfuscations do not disrupt the fuzzing process, even for different

compilers. The fuzzibility shows that in average the fuzzer can find, at least, 4 crashes per program in a

timely fashion.

RQ1.2: Obfuscations affect the exploitability of a program and they can either reduce it up to 50% of the

original in the case AntiAl, or increase it up to 27% in the case of EncAri.

5.2. On How the Obfuscation Changes the Type of Crash

This section analyses how the nature of the crash evolves. This relates to the cross-testing phase, where

ObfSec passes the relevant test cases (i.e., those that generated crashes in the original program) to its

obfuscation and viceversa. Table 3 shows the different type of errors we identify for the most relevant cases

of cross-testing for p (Ori → Ori) and qx (Ori → Obf). Some of the inputs generate false positives as a

consequence of the parameters or the instrumentation of the fuzzer. These are shown as ‘No Error/User’

error in the table. The reminder errors relate to the taxonomy of errors introduced in Section 3.1. We also

show in the table the instability of the obfuscations as a distribution. A more complete picture of the the

instability is shown in Figure 3, where we depict how this measure changes across obfuscation engines for

all cross-tests.

GCC: Several of the crashes affecting the original program “disappear” in the obfuscated version. We refer

to this cases in the example shown in Section 2. This is especially relevant for Tigress and, in particular,

for AntiAl, InitBr, InitOp and Virtu, where the percentage of original crashes that become false positives

grows from 14.18 (Virtu) to 24.67 points (AntiAl). Several of the crashes that disappear have originally

produced a segmentation fault. Here, the overall number of segmentation faults is reduced 23.24 points.

Virtu also reduces the segmentation faults significantly (19.14 points), but, at the same time, it increases

the number of timeouts (4.33 points more).

When looking at other type of errors that disappear, we see that illegal instruction errors never occur

with AntiAl. Similarly, we observe that this errors significantly decrease with InitEn and Virtu. Instead,

ImplFl increases the number of illegal instruction errors. Furthermore, AntiAl, InitBr, InitOp and UpOp

increase the number of out of memory errors from 0 up to 0.17%. In terms of instability, Virtu, UpOp,

InitOp, InitEn, InitBr and, especially, AntiAl are the most unstable obfuscations. Theirs instability

ranges from 3.74 up to 16.84. AntiBr is fully unstable as it leads every input to a crash.

16

●

● ● ● ●

●

●

●

●

●

● ● ●
● ● ● ●

●
●

●

● ● ● ●

● ●

●
●

●

● ● ● ● ● ● ●

● ●

●
● ● ● ● ●

●
●

●

●

●
● ●

● ● ●

●

●
●

D
iv

er
ge

nc
e

A
nt

iA
l

A
nt

iT
a

E
nc

A
ri

E
nc

Li
t

Im
pl

F
l

In
itB

r
In

itE
n

In
itO

p
U

pO
p

V
ir

tu
C

O
N

um
C

O
W

or
d

C
X

X
S

ho
rt

C
X

X
H

ex
C

X
X

S
um

3
llv

m
su

b
llv

m
fla

llv
m

bc
f

llv
m

sp
lit

0
4

8
12

16

Instability
Inv. Instability
Complementarity

Figure 3: Instability, inverse instability and complementarity for every obfuscations in terms of crashes.

17

Method No error SF Il. Inst Corrup. FPE TOut OoM Others Inst

GCC Ori → Ori 24.06% 68.74% 0.17% 0.60% 3.65% 2.77% 0.00% 0.00% 0.00

Ori → AntiAl 48.73% 45.50% 0.00% 0.62% 3.39% 1.61% 0.14% 0.00% 16.84

Ori → AntiBr 0.00% 99.79% 0.00% 0.00% 0.21% 0.00% 0.00% 0.00% 699.26

Ori → ImplFl 26.91% 66.73% 0.22% 0.86% 3.14% 2.15% 0.00% 0.00% 0.36

Ori → InitBr 39.56% 53.83% 0.09% 0.84% 3.69% 1.82% 0.16% 0.00% 5.87

Ori → InitEn 35.69% 56.91% 0.01% 0.86% 3.65% 2.87% 0.00% 0.01% 3.74

Ori → InitOp 39.25% 54.17% 0.10% 0.84% 3.62% 1.85% 0.17% 0.00% 5.65

Ori → Virtu 38.93% 49.60% 0.05% 0.89% 3.38% 7.10% 0.00% 0.06% 8.51

LLVM Ori → Ori 18.51% 71.43% 0.18% 0.63% 6.76% 2.45% 0.01% 0.03% 0.00

Ori → llvmsub 18.40% 71.72% 0.20% 0.62% 6.65% 2.37% 0.01% 0.03% 0.00

Ori → llvmsplit 24.65% 65.98% 0.14% 0.55% 6.49% 2.17% 0.00% 0.02% 1.20

Table 3: Relevant cases of the errors related to the cross-testing between the original program applied to itself and its obfuscated

versions.

Finally, CObfs and CXX obfuscations show similar results than in the original program, and they are stable.

However, it is important to highlight that these obfuscations are not performing complex transformations

as is the case of Tigress. Recall that these transformations simply change the names of the literals in the

case of Cobfs, or arithmetic operations and strings in the case of CXX.

LLVM: LLVM obfuscations increment the number of false positives with respect to the baseline (i.e., the

original program compiled with LLVM). However, the Sub obfuscation reduces them 0.11 points and incre-

ments the number of segmentation faults 0.29 points. The reminder of the LLVM obfuscations overall reduce

the number of crashes. The most representative case is Split, that reduces the number of segmentation

faults 5.45 points incrementing the report of false positives 6.14 points.

Cross-testing: We measure the inverted instability and the complementarity in the cross-testing phase.

Figure 3 shows how these measures change across transformations. Table 4 summarizes the most interesting

cross-tests where we apply inputs from the obfuscated programs to the original one. As we observe in

Section 5.1, CXX and CObfs have similar results than the original program, they are neither significantly

unstable nor complementary. However, the behavior of Tigress and LLVM-Obfs diverge depending on the

type of obfuscation strategy. First, AntiAl, InitBr, InitEn, InipOp, UpOp and Virtu change the nature

of the identified errors (on the obfuscated program). This renders these obfuscation significantly unstable.

All of them but Virtu produce a high number of false positives (between 37.95 and 45.11%) and several

of these false positives turn to segmentation faults when they run on the original program. Specifically,

18

segmentation faults increase from 13.66 to 22.41 points. Furthermore, Virtu finds less false positives than

the other programs. This is probably a consequence on the timeouts reduction between Virtu and the

original program.

For AntiAl, InitBr, InitOp and UpOp, the original program also increments the illegal instructions

between 0.15 to 0.18 points, something uncommon on the other obfuscations. Cross-testing also shows

timeout changes between these four obfuscations and the original program. Interestingly, they increase

with respect to the obfuscation, between 1.23 and up to 1.73 points. Considering them as testability

transformations, these obfuscations help to find timeouts in programs. Nevertheless, almost no obfuscation

complements the testing process significantly — Virtu being an exception as shown in Figure 3. Virtu also

increments floating point exception on the original program by 0.67 points. This suggests that Virtu is a

good testability transformation to unmask floating point exceptions on real programs. For LLVM-Obfs, BCF

and Split have similar results than the Tigress’ obfuscations on false positives and segmentation faults,

but only Fla has a good complementary ability.

RQ2.1: ObfSec shows how the error changes, depending on the obfuscations, to different types of error. In

several cases, the crash disappears, especially with AntiAl and InitBr. Nevertheless the majority of the

obfuscations are stable in terms of errors found by the fuzzers.

RQ2.2: ObfSec shows that using the obfuscation as a testability transformation unmask several errors when

the obfuscation is Virtu or LLVM-Fla, but not in general. Virtu discovers new FPE errors that are harder

to unmask during the fuzzing process on the original program.

5.3. On How the Obfuscation Changes Vulnerabilities

After studying the life-cycle of crashes, we then look at crashes that can be exploited. Our system triages

exploits and associate them to the crashes (see Section 3.2). Figure 4 compares the divergence between the

three measures we introduce to study the triage across different obfuscations. We show a summarized break

down of some of the most relevant tests in Table 5. This summary shows the prevalence of the different

type of exploits and how they evolve from the original program to the obfuscation. We refer to these cases

as changed crash as we discuss in Section 2.

GCC: The first thing to note relates to AntiBr. Recall that this obfuscation results on segmentation

fault in all our tests. However, there are a wide range of different exploits in our test suit affected by

this obfuscation. In particular, 18.24% of the exploits are DestAv, 59.84% BranchAv and 21.93% Stack

Corruptions. This suggests that, even thought different paths reach the error, there are several vectors to

attack it. Disregarding AntiBr, the obfuscations that have more influence on the transitions of exploits are

AntiAl, InitBr, InitEn, InitOp, UpOp and Virtu. Even though these obfuscations were already unstable

in terms on crashes (Section 5.2), the instability in terms of exploits grows almost an order of magnitude

for all but Virtu, which decreases. All these obfuscations turn ReturnAv vulnerabilities, exploited as an

stack corruption of the return statement of a function, to different exploit.

19

Method No error SF Il. Inst Corrup. FPE TOut OoM Others InvI. Com

AntiAl → AntiAl 45.11% 46.64% 0.01% 0.54% 4.90% 2.79% 0.01% 0.01%

AntiAl → Ori 21.12% 69.05% 0.19% 0.56% 4.92% 4.15% 0.00% 0.01% 14.87 0.64

InitBr → InitBr 41.18% 50.84% 0.06% 0.67% 4.46% 2.78% 0.01% 0.01%

InitBr → Ori 26.24% 64.58% 0.21% 0.67% 4.13% 4.16% 0.00% 0.01% 5.71 0.53

InitEn → InitEn 37.95% 54.31% 0.01% 0.52% 4.12% 3.09% 0.00% 0.00%

InitEn → Ori 23.25% 67.97% 0.09% 0.57% 4.31% 3.80% 0.00% 0.00% 5.50 0.26

InitOp → InitOp 42.71% 49.21% 0.06% 0.70% 4.53% 2.78% 0.01% 0.01%

InitOp → Ori 25.97% 64.45% 0.24% 0.64% 4.18% 4.51% 0.00% 0.01% 7.24 0.65

UpOp → UpOp 41.54% 50.72% 0.05% 0.69% 4.25% 2.73% 0.01% 0.01%

UpOp → Ori 25.26% 65.89% 0.22% 0.71% 3.96% 3.96% 0.00% 0.01% 6.76 0.31

Virtu → Virtu 17.76% 65.36% 0.00% 0.67% 7.80% 8.22% 0.00% 0.18%

Virtu → Ori 21.58% 66.53% 0.00% 0.74% 8.47% 2.68% 0.00% 0.00% 7.80 5.55

llvmbcf → llvmbcf 23.23% 67.37% 0.21% 0.55% 6.10% 2.47% 0.01% 0.07%

Ori → llvmbcf 16.96% 73.62% 0.46% 0.52% 6.12% 2.30% 0.00% 0.03% 1.53 0.36

llvmsplit → llvmsplit 24.65% 66.32% 0.14% 0.63% 6.09% 2.13% 0.00% 0.04%

Ori → llvmsplit 18.02% 73.00% 0.23% 0.58% 6.02% 2.10% 0.01% 0.04% 1.44 0.10

Table 4: Most relevant obfuscations related to cross-testing from the obfuscation to the original program, separated by type of

crashes.

20

Method SFOnPc DestAv RetAv HeapEr BranchAv BadInst StackC ExInst

Ori → Ori 6.82% 64.76% 19.86% 2.61% 2.90% 0.00% 3.04% 0

Ori → AntiAl 8.09% 73.59% 2.17% 6.29% 7.70% 0.09% 2.07% 30.61

Ori → AntiBr 0.00% 18.24% 0.00% 0.00% 59.84% 0.00% 21.93% 816.78

Ori → InitBr 3.86% 56.14% 1.13% 4.14% 18.26% 0.07% 16.40% 58.34

Ori → InitEn 2.68% 83.37% 0.95% 3.87% 4.54% 0.00% 4.58% 46.73

Ori → InitOp 3.87% 56.09% 1.17% 4.14% 18.25% 0.07% 16.41% 57.74

Ori → UpOp 2.92% 56.11% 1.16% 3.37% 19.24% 0.07% 17.13% 60.04

Ori → Virtu 11.01% 52.82% 17.08% 5.88% 4.67% 0.00% 8.53% 6.29

LLVM → LLVM 5.76% 66.57% 16.85% 1.85% 6.26% 0.00% 2.71% 0.00

Ori → LLVMBcf 4.50% 72.84% 12.07% 1.95% 6.84% 0.00% 1.80% 1.51

Ori → LLVMSplit 3.33% 74.70% 10.90% 1.99% 6.53% 0.01% 2.54% 2.29

Table 5: Relevant obfuscations during the cross-testing phase of the triage from the original program to the obfuscations.

On the one hand, AntiAl mainly changes to DestAv (8.83 points higher than the original) and, in some

of cases to BrachAv (4.8 points higher), HeapError (3.68 points) and even a few to BadInstruction (0.09

points) — a kind of vulnerability that was not present in the original program. On the other hand, InitBr,

InitOp and UpOp not only reduce the number of exploits shown as ReturnAv but also as DestAv, changing

the vulnerabilities mainly to: i) BranchAv (between 15.35 and 16.34 points more than the original), ii)

BadIntruction (0.07 points more), and iii) StackCorruption (between 13.36 and 14.09 points). Interestingly,

Tigress increases StackCorruption vulnerabilities for all obfuscations but AntiAl, that reduces them by

one point. Finally, Virtu is an exception as this obfuscation transforms DestAv and some ReturnAv into

SegFaultOnPC (4.19 points more than the original) and Heap Error (3.27 points more).

LLVM: CObfus and CXX do not alter the original distribution of exploits significantly. In several cases there

is a small increment on ReturnAv and a small reduction on DestAv vulnerabilities (around 1 or 2 points).

Nevertheless, they are as stable as what we observe with crashes (Figure 4). For the LLVM-obfuscator, we

see an opposite tendency than in the case of Tigress. First, the obfuscations reduce the Stack Corruption

up to 0.91 points. Second, BCF and Split obfuscations transform ReturnAv mainly to DestAV (between

6.27 and 8.13 points more). Finally, we see that they are also more unstable for exploits than for crashes

but not significantly (Figure 4).

Triage: Table 6 display the most relevant cases we see after applying the triage process to all crashes in

Table 4. For each test, we study the type of exploit observed, the inverse instability and the complementarity.

In some obfuscations, there is an obvious change on the type of exploit. This is shown in Figure 4, where

21

●

● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ●
● ●

●

● ● ● ●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
● ● ●

● ● ●
● ● ●

●

● ●
●

● ●

●

● ● ●

D
iv

er
ge

nc
e

A
nt

iA
l

A
nt

iT
a

E
nc

A
ri

E
nc

Li
t

Im
pl

F
l

In
itB

r
In

itE
n

In
itO

p
U

pO
p

V
ir

tu
C

O
N

um
C

O
W

or
d

C
X

X
S

ho
rt

C
X

X
H

ex
C

X
X

S
um

3
llv

m
su

b
llv

m
fla

llv
m

bc
f

llv
m

sp
lit

0
4

8
12

20
28

36
44

52
60

Instability
Inv. Instability
Complementarity

Figure 4: Instability, inverse instability and complementarity for every obfuscations in terms of triage.

22

Method SFOnPc DestAv RetAv HeapEr BranchAv BadInst StackC IvIns Com

AntiAl → AntiAl 22.14% 66.29% 0.78% 3.96% 5.59% 0.02% 1.23%

AntiAl → Ori 5.94% 60.34% 22.95% 3.12% 3.80% 0.00% 3.85% 42.01 1.31

EncAri → EncAri 4.88% 68.97% 16.83% 1.54% 4.81% 0.06% 2.91%

EncAri → Ori 4.53% 66.67% 19.85% 1.55% 4.42% 0.02% 2.96% 0.33 1.15

InitBr → InitBr 0.76% 87.33% 1.00% 3.50% 5.00% 0.26% 2.15%

InitBr → Ori 5.88% 60.37% 24.19% 2.44% 3.63% 0.00% 3.48% 34.97 0.75

InitEn → InitEn 2.32% 87.54% 1.03% 2.91% 4.36% 0.00% 1.84%

InitEn → Ori 4.71% 60.30% 27.02% 1.93% 3.01% 0.00% 3.04% 29.53 1.73

InitOp → InitOp 1.24% 87.75% 0.58% 3.98% 5.28% 0.26% 0.91%

InitOp → Ori 6.38% 57.57% 26.10% 2.51% 3.85% 0.00% 3.60% 40.70 1.44

UpOp → UpOp 1.52% 86.85% 0.77% 3.43% 6.10% 0.19% 1.14%

UpOp → Ori 6.43% 58.41% 21.76% 2.40% 6.68% 0.01% 4.31% 29.42 2.01

Virtu → Virtu 12.20% 48.34% 9.09% 5.64% 13.61% 0.00% 11.12%

Virtu → Ori 6.06% 66.97% 2.88% 4.01% 11.71% 0.00% 8.36% 10.35 28.74

CObfsWord → CObfsWord 5.69% 63.65% 20.74% 2.68% 2.78% 0.15% 4.31%

CObfsWord → Ori 6.20% 61.39% 22.38% 2.95% 3.91% 0.00% 3.17% 3.54 0.43

LLVMFla → LLVMFla 3.80% 59.82% 25.25% 1.51% 6.11% 0.00% 3.51%

LLVMFla → Ori 3.69% 59.78% 25.46% 1.51% 6.13% 0.00% 3.43% 0.00 2.64

LLVMSplit → LLVMSplit 3.33% 74.70% 10.90% 1.99% 6.53% 0.01% 2.54%

LLVMSplit → Ori 5.44% 68.43% 15.42% 1.78% 5.60% 0.00% 3.33% 1.94 0.20

LLVMBcf → LLVMBcf 4.16% 73.35% 11.27% 1.76% 6.82% 0.00% 2.64%

LLVMBcf → Ori 6.84% 64.87% 18.07% 1.61% 6.02% 0.17% 2.41% 2.86 0.36

Table 6: Most relevant cross-testing triage results from the obfuscated corpora to the original.

23

we represent the divergences for every obfuscation. When looking at obfuscations in Tigress, the crashes

found over AntiAl, InitBr, InitEn, InitOp, UpOp and Virtu obfuscations significantly change the type of

exploit when applied to the original program. They also increase their inverse instability almost an order of

magnitude (Figure 4 and Figure 3). In particular, 22.14% of the exploits observed in AntiAl are related to

SegFaultOnPc, which reduces to 5.94% with respect to the original. Instead, ReturnAv increases to 22.95%

(22.17 points more than the obfuscation).

A common feature across all obfuscations in Tigress is that the prevalence of the DestAv exploit reduces

and ReturnAv increases. When looking at these two type of exploits, we note that the following obfuscations

stand out InitBr, InitEn, InitOp, UpOp and Virtu.

These obfuscations, as testability transformations, become more complementary for vulnerabilities than

for crashes as shown when comparing Figure 4 and Figure 3. Their complementarity in several cases ranges

from 1.31 to 28.74. Although all the cases are relevant from a testability transformation point of view, the

case of Virtu is unique: with 28.74 of complementary, it discovers more BranchAv and StackCorruption

exploits than other obfuscations. Furthermore, Virtu also affect to the original program in several cases.

Moreover, EncAri and UpOp also stand — being the only obfuscations that produced BadInstruction exploits

on the original program (0.02 and 0.01%).

On another note, CObfs and CXX do not change the nature of vulnerabilities significantly. Although, in

the former keeps reduces DestAV vulnerabilities while incrementing ReturnAv when applied to the original

program instead of to the obfuscated one. It is interesting to note the CObfsWord has a significant inverse

instability, mainly because it generates BadInstruction errors that disappear on the original program. CXX

keeps similar values to the original in all the cases. For LLVM obfuscations, the main differences in terms

of exploits are Split and BCF. As testability transformations, these obfuscations find more SegFaultOnPc

on the original program and, in the case of BCF, it finds 0.17% BadInstruction vulnerabilities that were not

identified before. These obfuscations also reduces the number of DestAv exploits and increments ReturnAv.

RQ3.1: ObfSec exposes how sensitive exploits are to the obfuscation process, especially in terms of the

inverse instability which grows an order of magnitude with respect to the number of crashes. It shows that

vulnerabilities can change, especially when using Virtu, InitBr, InitOp and IpOp obfuscations. It also

shows that this is a cross-compiler phenomenon as also LLVM obfuscations (BCF or Split) change the

nature of the exploits.

RQ3.2: ObfSec also shows how the quality offered by the obfuscation process to produce testability transfor-

mations also extends to detect novel exploits (in addition to crashes). Furthermore, ObfSec are significantly

more complementary than crashes. The most relevant case is Virtu, whose complementary factor grows up

to 28.74. It is also relevant the case of the BadInstruction vulnerability, unmasked in the GCC compilation

by UpOp and on Clang by BCF.

24

5.4. Analyzing Patterns in Error Changes

Variations between crashes and exploits follows specific patterns, i.e.: under different obfuscation meth-

ods, specific types of crashes or vulnerabilities tend to change to the same type of errors. We next study the

patterns shown in the most unstable obfuscations. In particular, we look at the following six obfuscations:

AntiAl, InitBr, InitEn, InitOp, UpOp and Virtu.

Crashes: Figure 5 shows the transitions between crashes during the cross-testing phase. Results are shown

in normalized logarithmic scale. On Figure 5a, we see transitions of crashes after running our initial test

suite: testing first on the original corpus and then on the obfuscations. Figure 5b shows the inverse process,

which relates to the test suite generated on the obfuscated corpora. In both Figure 5a and 5b we observe a

common trends. The fist thing to note is the significant amount of false positives that turn into segmentation

faults and vice versa. This indicates that ObfSec is unmasking some of these crashes, which are difficult to

identify otherwise. We also observe that segmentation faults can transit to almost every kind of crash, as it

happens to some extent with to timeouts and no errors.

One of the most prevalent cases is the transition from segmentation fault to timeout, probably as a conse-

quence of manipulating the boundaries of the different loops in a program. Another common transition from

segmentation fault is to illegal instruction, which suggest that the former is prone to errors on the manipula-

tion of the program instruction space. Interestingly, crashes such as as illegal instruction or corruption only

change to either: no error, or — in the case of corruption — to segmentation faults. Similarly, FPE leads to

these two types as well and rarely to timeouts. This suggests that there are no potential connections on the

corpus logic between: corruptions, illegal instructions and floating point exceptions. Finally, several crashes

transit to out of memory errors. This is a consequence of a memory abuse introduced by some obfuscations.

In the inverse case, the results are similar: the transitions between corruption, illegal instruction and floating

point exception are not connected either. Instead, segmentation faults and no errors are predominant.

Exploits: Figure 6 shows the corresponding transitions for the triage phase. In both Figure 6a and 6b we

observe a similar trend, although the absolute number of transitions might differ. This is because exploits

change more often, as the instability and inverse instability report (Section 5.3). There are three types of

exploits that are predominately volatile: stack corruption, destination violation, and segmentation fault on

PC. These three cases are related to the stack or they require modifications on the information stored in

the stack. Thus, these transitions suggest that manipulations on the stack are sensitive to obfuscations.

Effectively, these obfuscations are therefore increasing the attack surface of a program. This confirms the

masking/unmasking properties of the obfuscation process discussed in Section 2.

Heap error and bad instruction are more stable exploits, as they do not transit to or receive transitions

from obfuscations. There are two exceptions to this: DestAv and BadInstruction. In the inverse case, these

results are similar but transpose, nevertheless, some pattern changes. For instance, BadInstruction transits

to SegmentationFault and StackCorruption. This is a consequence of the complementary properties of some

25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

E
rr

or

T
im

eO
ut

Il
In

st
C

or
ru

p

S
eg

 F
au

lt

F
P

E

O
oM

No Error

TimeOut

Il Inst

Corrup

Seg Fault

FPE

OoM

(a) Original to Obfuscation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

E
rr

or

T
im

eO
ut

Il
In

st
C

or
ru

p

S
eg

 F
au

lt

F
P

E

O
oM

No Error

TimeOut

Il Inst

Corrup

Seg Fault

FPE

OoM

(b) Obfuscation to Original

Figure 5: Transitions between the types of crash during the cross-testing process. The left side shows transitions from the

original test suite while the right side show the equivalent from the obfuscation.

obfuscations. They are finding connections between these exploits that were not exposed in the original test

suite. Also, the transition proportions change for BranchAv and ReturnAv, leading to find more exploits

related to BranchAv than in the original test suite.

These transitions between crashes and exploits suggest that unstable crashes, as well as exploits, require

special attention during the bug fixing process. This is because they mask and expose vulnerabilities in ways

that the developer can not control with standard try-catch clauses. Some of these crashes are segmentation

faults, and some of the exploits are stack corruption, destination violation and segmentation fault on PC.

RQ4: Obfuscations produce transitions between crashes an errors such that patterns emerge. The most

severe crash is SegmentationFault that can evolve to almost any other type of crash. For vulnerabilities,

there are three relevant vulnerabilities: DestAv, SegFaultOnPC and StackCorruption, all related to the way

the stack is manipulated.

6. Discussion

ObfSec shows that obfuscations are not fuzzification — or anti-fuzzing — techniques for a comprehen-

sively large corpus of programs (70,137 programs). The obfuscation displaying the most significant resistance

reduces the number of crashes detected to a third of the original, while anti-fuzzing techniques in the liter-

ature reduces it by 40 times (Jung et al., 2019). Our method can measure how some obfuscations are more

26

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
es

tA
v

B
ra

nc
hA

v

R
et

ur
nA

v
S

eg
Fa

ul
t

S
ta

ck
C

or
H

ea
pE

rr
or

B
ad

In
st

r

DestAv

BranchAv

ReturnAv

SegFault

StackCor

HeapError

BadInstr

(a) Original to Obfuscation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
es

tA
v

B
ra

nc
hA

v

R
et

ur
nA

v
S

eg
Fa

ul
t

S
ta

ck
C

or
H

ea
pE

rr
or

B
ad

In
st

r

DestAv

BranchAv

ReturnAv

SegFault

StackCor

HeapError

BadInstr

(b) Obfuscation to Original

Figure 6: Transitions between the types of exploits during the cross-testing process. The left side shows transitions from the

original test suite while the right side show the equivalent from the obfuscation.

prone to be exploited than others, and how some others can reduce the exposure.

Our cross-testing technique enable us to understand the life-cycle of a bug that goes through obfuscation.

It shows that conservative obfuscations — those modifying literals and arithmetic operations — have less

effect on the way bugs are manifested. However, obfuscations that modify the program’s control flow

graph alter the way the bug manifest. In particular, this affects specially to obfuscations that i) implement

protections against taint or alias analysis, ii) add opaque predicates and, more importantly, iii) those based

on visualization. Here, understanding how a bug turns into another (i.e., transitions) one is key to assess

the severity of the exploitability of the crash. ObfSec shows that these transitions can be predicted as

they follow very specific patterns. These patterns show that certain type of errors (i.e., illegal instructions,

corruptions and floating point exceptions) are stable crashes. Instead, segmentation faults are completely

unstable. In the case of exploits, those affecting the stack are also unstable. Using this information, our

system can help developers on the daunting task of prioritizing the fix of the most critical errors in large

software development projects.

There is a wealth of literature that explores how to triage identified errors (Wang et al., 2018b). Although

our architecture admits any of such, our system currently relies on whether a crashed is deemed exploitable

or not as given by the heuristics described in Section 3.1. We simply prioritize crashes that are exploitable.

As a key novelty we contextualize this information with the type of obfuscation engine. As some errors are

27

masked and certain obfuscations are more prone than others to unmask them, the triage process can not

always be generalized to the type of algorithm as we show in Section 5.4. Thus, the triage phase is tailored to

the program under test and the type of obfuscation under consideration. This process is paramount to guide

developers on choosing the best obfuscation algorithm that matches their needs, especially in projects with

limited budget, where there is a trade-off between finding and fixing all program crashes and the security of

the obfuscation algorithm.

Finally, ObfSec also shows that obfuscating helps the fuzzer finding new crashes. Our findings call to

rethink the software testing landscape to adopt the techniques used in obfuscation as effective testability

transformation tools. This is, a metamorphic testing strategy where instead of mutating the input, we

mutate the program itself. Finding the proper obfuscations enables fuzzers in the detection of novel bugs,

working on semantically-equivalent representation of the program.

Threats to Validity. Our internal threats to validity relate to the corpus and obfuscation techniques

selected. Our study focuses on programs with crashes, in this case the set of programs of CodeFlaws. These

programs are individually small programs, nevertheless, we consider a sizable number altogether. Their size

allows us to make particular studies of their behavior. As for the obfuscation techniques, we study the four

most popular techniques currently available (Chen et al., 2016). Our external threats to validity relate to

our choice of compilers. As we run our experiments on an LTS distribution of Debian, the compiler’s version

for GCC or Clang are not the last releases but stable ones. Thus, although the compiler can affect the crash

generation process, the selection of the same compiler across the different experimental settings maintain

the coherence.

7. Related Work

This section sets our contribution into the obfuscation arms race and discuss our novelty with respect of

the testing techniques applied for obfuscation.

The obfuscation arms race. The obfuscation community has been evaluating the security of obfusca-

tion engines as a way to measure their strength against adversarial analysts (Schrittwieser et al., 2016) –

the attacker. While the obfuscation framework aims at concealing code –such as in the case of malware

(Menéndez, 2021a), the attacker aims at understanding the hidden semantics to reconstruct its functionality

(i.e., de-obfuscate). However, as Schrittwieser et al. show in (Schrittwieser et al., 2016), the attacker’s re-

sources directly affect the strength of the obfuscations. Code complexity also limits the analyst’s resources,

making simple obfuscations more effective. Schrittwieser et al. also show that software analysts do not

focus on the functionality of the obfuscated program, which is part of our main goal. Our aim, instead, is

to measure the reliability of the obfuscation process from a software quality perspective, while considering

a malicious adversary trying to exploit vulnerabilities in the programs. Note that obfuscation is normally

28

performed automatically, and it is applied at scale. This is, for instance, the case of Android apps (Wang

et al., 2018a). Thus, it is paramount to understand how trustworthy current techniques are.

The goal of the analysts is to attack obfuscation with de-obfuscations techniques. These techniques aim to

understand the software semantics, but they can also be used to measure the quality of the obfuscation (Cec-

cato et al., 2008, 2009). This measure of quality is refereed as “the security of the obfuscation” (Schrittwieser

et al., 2016; Preda & Maggi, 2017) or its potency (Ceccato et al., 2008, 2009). Other measures extend in-

formation theoretic metrics to evaluate how good the security of an obfuscation is (Mohsen & Pinto, 2015).

The adversarial scenario aims to improve the quality of obfuscation techniques by understanding and

strengthen them. A good example is the work of Rajendran et al. (Rajendran et al., 2012), who developed a

system that was able to defeat the obfuscator EPIC (Roy et al., 2010), based on gate insertion on integrated

circuits, in linear time, but it was used to strength this obfuscation and make it exponentially resistance.

Some specific tools, like LOCO (Madou et al., 2006), interactively serve in both directions, they apply

transformations to make the software easier or more complicated to read. Obfuscation can also be used as

a mitigation strategy against trojans (Marcelli et al., 2018). Marcelli et al. proved that a software-based

obfuscation can stop a Hardware Trojan by making semantic equivalent transformations on software.

Similarly to how compilers can introduce vulnerabilities on software in the presence of bugs (David,

2018), obfuscation can also create vulnerabilities when they are transforming buggy code. We aim to cover

this usability gap by preventing bugs from spreading and exposing vulnerabilities through the obfuscation

life-cycle. Recent works in the area (Xu et al., 2017; Mouha et al., 2018) have shown that the most prominent

obfuscation techniques (e.g., (Xu et al., 2017; Gentry et al., 2015; Bitansky & Vaikuntanathan, 2018)) lack

on reliability. This means that their performance and usability is too weak to generate practical obfuscation

solutions, making it challenging for software security applications. This comes to show that related works

can not find any potent and reliable approach, as a consequence of having no metrics that can lead to both

directions, which is what we are introducing.

Different learning areas has also studied the impact that obfuscation has in programs, similarly to us.

For instance, Berkovsky et al. studied the impact of data obfuscation for protecting users’ identities in

recommender systems (Berkovsky et al., 2012). In this scenario, obfuscation has also been used as an

adversary to the recommender (Polatidis et al., 2017). On the other hand, obfuscation can protect users’

identity, as Hazan et al shown in the case of the keystroke processes to guarantee that the users’ identity is

not stolen (Hazan et al., 2020).

Working at the code level, Sheneamer et al. studied how obfuscation affects to clone detection systems

(Sheneamer et al., 2018). Yalcin et al. followed a similar line of research to validate plagiarism detection

systems (Yalcin et al., 2022). Finally, from the perspective of malware analysis and security, obfuscation

has always been a strong challenge to the detection problem as Hou et al. studies in web-based malware

detection (Hou et al., 2010) and Fan et al. in Windows malware scenario (Fan et al., 2016).

29

Testing obfuscation. Approaches such as symbolic execution (Banescu et al., 2016a) have tried to deal

with obfuscation. However, these techniques have issues to scale to bigger and complex programs because of

path exploitation (Menéndez, 2021b). As obfuscation have proven to resists, not only symbolic execution,

but other similar traditional testing techniques (Ma et al., 2014), we focused our efforts on using fuzz

testing (Bounimova et al., 2013). The fuzzer creates inputs that traverse specific program areas. We use the

same inputs to traverse the obfuscated version of the program in a controlled experiment. This allows us to

map errors in the original code to errors in the obfuscated program for a given input. We also study how

these errors are propagated. Jung et al. (Jung et al., 2019) and Guler et al. (Güler et al., 2019) provided

intial results related to the abilities of fuzzers to some obfuscations as use cases. We are providing a large

case study extending this information to stability, complementarity and exploitability of obfuscations.

Our idea is focused on commertial obfuscation, it is inspired by the work on indistinguishability obfus-

cation (IO), one of the most secure obfuscation techniques (Xu et al., 2017). IO use cryptographic methods

to conceal the program making two obfuscated versions completly indistinguishable. When Xu et al. (Xu

et al., 2017) collected different obfuscation techniques in order to identify strong obfuscations, their out-

come pointed to the work of Garg et al. (Garg et al., 2016) on IO as the most secure. However, Garg et

al. remarked that this approach lacks usability and it is a challenge to apply it to software. Their main

outcome was that they could not find any secure and usable approach, as a consequence of having no metrics

that can lead on those directions. Their aim is to motivate the communities to rethink this area, specially

when the obfuscation implementation can contain bugs. Some authors have applied metamorphic testing to

evaluate the usability of obfuscations (Chen et al., 2016), however, these works have mainly focused on the

implementation quality, and not on the bug dissemination that the obfuscations can produced.

Although IO became one of the most promising areas of research, and some works have extended to

multi-linear map reduction (Gentry et al., 2015) and functional encryption (Bitansky & Vaikuntanathan,

2018), it is still vulnerable to attacks (Coron et al., 2017). Besides, it is close to cryptography and, in the

same way cryptography can lead to vulnerabilities (Mouha et al., 2018), IO, and other obfuscations, can

lead to similar problems. Obfuscations are software transformations and as any software transformation,

they can introduce vulnerabilities. As compilers can introduce vulnerabilities on software in the presence of

bugs (David, 2018), obfuscation can also create vulnerabilities when they are transforming a bug.

8. Conclusions

We have introduced ObfSec, a methodology that leverages fuzz testing to measure the security of ob-

fuscations from a testing perspective. ObfSec introduces four novel metrics and measures in three phases.

The generation phase measures the resistance introduced by the obfuscations process into a fuzzing system

(fuzzibility). The triage phase evaluates the severity of crashes that have gone through a obfuscation

30

(exploitability). Finally, the cross-testing phase studies the testing divergence between the obfuscation

and the original program (instability). We also measure to what extent the divergence can add value to

the testability of the program (complementarity). Using these measures, on a corpus of 70,137 programs

created with 20 different obfuscation algorithms, we were able to study how obfuscations affect the reliability

of software in terms of testing, especially regarding the bug life-cycle.

As part of our future work, we will extend the application of our ObfSec system to different security

problems. On the one hand, we will investigate how our metrics can guide the fuzzification (anti-fuzzing)

process. On the other hand, we will use our system to improve the testability of the programs thorough a

guided process that aims at selecting suitable testability transformations depending on the program context.

This can also help to create new transformations. Finally, we will use our triage to generate rankings of

potential problematic obfuscation and to systematically find fixes to those vulnerabilities.

Acknowledgements

This work has been supported by the “Ramon y Cajal” Fellowship RYC-2020-029401-I.

References

Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., & Pretschner, A. (2016a). Code obfuscation against symbolic execution

attacks. In Proceedings of the 32nd Annual Conference on Computer Security Applications (pp. 189–200). ACM.

Banescu, S., Collberg, C. S., Ganesh, V., Newsham, Z., & Pretschner, A. (2016b). Code obfuscation against symbolic execution

attacks. In Proceedings of the 32nd Annual Conference on Computer Security Applications, ACSAC 2016, Los Angeles,

CA, USA, December 5-9, 2016 (pp. 189–200). URL: http://dl.acm.org/citation.cfm?id=2991114.

Berkovsky, S., Kuflik, T., & Ricci, F. (2012). The impact of data obfuscation on the accuracy of collaborative filtering. Expert

Systems with Applications, 39 , 5033–5042.

Bitansky, N., & Vaikuntanathan, V. (2018). Indistinguishability obfuscation from functional encryption. J. ACM , 65 , 39:1–

39:37. URL: http://doi.acm.org/10.1145/3234511. doi:10.1145/3234511.

Bounimova, E., Godefroid, P., & Molnar, D. (2013). Billions and billions of constraints: Whitebox fuzz testing in production.

In Proceedings of the 2013 International Conference on Software Engineering (pp. 122–131). IEEE Press.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., & Tonella, P. (2008). Towards experimental

evaluation of code obfuscation techniques. In Proceedings of the 4th ACM workshop on Quality of protection (pp. 39–46).

ACM.

Ceccato, M., Di Penta, M., Nagra, J., Falcarin, P., Ricca, F., Torchiano, M., & Tonella, P. (2009). The effectiveness of source

code obfuscation: An experimental assessment. In 2009 IEEE 17th International Conference on Program Comprehension

(pp. 178–187). IEEE.

Chen, T. Y., Kuo, F.-C., Ma, W., Susilo, W., Towey, D., Voas, J., & Zhou, Z. Q. (2016). Metamorphic testing for cybersecurity.

Computer , 49 , 48–55.

Collberg, C., Thomborson, C., & Low, D. (1997). A taxonomy of obfuscating transformations. Technical Report Department

of Computer Science, The University of Auckland, New Zealand.

Coron, J.-S., Lee, M. S., Lepoint, T., & Tibouchi, M. (2017). Zeroizing attacks on indistinguishability obfuscation over clt13.

In S. Fehr (Ed.), Public-Key Cryptography – PKC 2017 (pp. 41–58). Berlin, Heidelberg: Springer Berlin Heidelberg.

31

http://dl.acm.org/citation.cfm?id=2991114
http://doi.acm.org/10.1145/3234511
http://dx.doi.org/10.1145/3234511

David, B. (2018). How a simple bug in ml compiler could be exploited for backdoors? arXiv preprint arXiv:1811.10851 , .

Fan, Y., Ye, Y., & Chen, L. (2016). Malicious sequential pattern mining for automatic malware detection. Expert Systems

with Applications, 52 , 16–25.

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., & Waters, B. (2016). Candidate indistinguishability obfuscation and

functional encryption for all circuits. SIAM Journal on Computing, 45 , 882–929.

Gentry, C., Lewko, A. B., Sahai, A., & Waters, B. (2015). Indistinguishability obfuscation from the multilinear subgroup

elimination assumption. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS) (pp. 151–

170). volume 00. URL: doi.ieeecomputersociety.org/10.1109/FOCS.2015.19. doi:10.1109/FOCS.2015.19.

Güler, E., Aschermann, C., Abbasi, A., & Holz, T. (2019). Antifuzz: Impeding fuzzing audits of binary executables. In 28th

{USENIX} Security Symposium ({USENIX} Security 19) (pp. 1931–1947).

Hammad, M., Garcia, J., & Malek, S. (2018). A large-scale empirical study on the effects of code obfuscations on android apps

and anti-malware products. In Proceedings of the 40th International Conference on Software Engineering (pp. 421–431).

ACM.

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A., & Roper, M. (2004). Testability transformation. IEEE

Transactions on Software Engineering, 30 , 3–16.

Hazan, I., Margalit, O., & Rokach, L. (2020). Keystroke dynamics obfuscation using key grouping. Expert Systems with

Applications, 143 , 113091.

Hou, Y.-T., Chang, Y., Chen, T., Laih, C.-S., & Chen, C.-M. (2010). Malicious web content detection by machine learning.

expert systems with applications, 37 , 55–60.

Jung, J., Hu, H., Solodukhin, D., Pagan, D., Lee, K. H., & Kim, T. (2019). Fuzzification: Anti-fuzzing techniques. In 28th

{USENIX} Security Symposium ({USENIX} Security 19) (pp. 1913–1930).

Klees, G., Ruef, A., Cooper, B., Wei, S., & Hicks, M. (2018). Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security (pp. 2123–2138). ACM.

Ma, H., Ma, X., Liu, W., Huang, Z., Gao, D., & Jia, C. (2014). Control flow obfuscation using neural network to fight concolic

testing. In International Conference on Security and Privacy in Communication Systems (pp. 287–304). Springer.

Madou, M., Van Put, L., & De Bosschere, K. (2006). Loco: An interactive code (de)obfuscation tool. In Proceedings of the 2006

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation PEPM ’06 (pp. 140–144).

New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/1111542.1111566. doi:10.1145/1111542.1111566.

Marcelli, A., Sanchez, E., Squiller, G., Jamal, M. U., Imtiaz, A., Machetti, S., Mangani, F., Monti, P., Pola, D., Salvato, A.,

& Simili, M. (2018). Defeating hardware trojan in microprocessor cores through software obfuscation. In 2018 IEEE 19th

Latin-American Test Symposium (LATS) (pp. 1–6). doi:10.1109/LATW.2018.8349680.

Menéndez, H. D. (2021a). Malware: The never-ending arms race. Open Journal of Cybersecurity, 1 , 1–25.

Menéndez, H. D. (2021b). Software testing or the bugs nightmare. Open Journal of Software Engineering, 1 , 1–21.

Mohsen, R., & Pinto, A. M. (2015). Algorithmic information theory for obfuscation security. IACR Cryptology ePrint Archive,

2015 , 793.

Mouha, N., Raunak, M. S., Kuhn, D. R., & Kacker, R. (2018). Finding bugs in cryptographic hash function implementations.

IEEE Transactions on Reliability, 67 , 870–884. doi:10.1109/TR.2018.2847247.

Polatidis, N., Georgiadis, C. K., Pimenidis, E., & Mouratidis, H. (2017). Privacy-preserving collaborative recommendations

based on random perturbations. Expert Systems with Applications, 71 , 18–25.

Preda, M. D., & Maggi, F. (2017). Testing android malware detectors against code obfuscation: a systematization of knowledge

and unified methodology. Journal of Computer Virology and Hacking Techniques, 13 , 209–232. URL: https://doi.org/

10.1007/s11416-016-0282-2. doi:10.1007/s11416-016-0282-2.

Rajendran, J., Pino, Y., Sinanoglu, O., & Karri, R. (2012). Security analysis of logic obfuscation. In Proceedings of the 49th

32

doi.ieeecomputersociety.org/10.1109/FOCS.2015.19
http://dx.doi.org/10.1109/FOCS.2015.19
http://doi.acm.org/10.1145/1111542.1111566
http://dx.doi.org/10.1145/1111542.1111566
http://dx.doi.org/10.1109/LATW.2018.8349680
http://dx.doi.org/10.1109/TR.2018.2847247
https://doi.org/10.1007/s11416-016-0282-2
https://doi.org/10.1007/s11416-016-0282-2
http://dx.doi.org/10.1007/s11416-016-0282-2

Annual Design Automation Conference DAC ’12 (pp. 83–89). New York, NY, USA: ACM. URL: http://doi.acm.org/

10.1145/2228360.2228377. doi:10.1145/2228360.2228377.

Roy, J. A., Koushanfar, F., & Markov, I. L. (2010). Ending piracy of integrated circuits. Computer , 43 , 30–38.

Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., & Weippl, E. (2016). Protecting software through obfuscation:

Can it keep pace with progress in code analysis? ACM Computing Surveys (CSUR), 49 , 4.

Sheneamer, A., Roy, S., & Kalita, J. (2018). A detection framework for semantic code clones and obfuscated code. Expert

Systems with Applications, 97 , 405–420.

Tan, S. H., Yi, J., Yulis, Mechtaev, S., & Roychoudhury, A. (2017). Codeflaws: A programming competition benchmark for

evaluating automated program repair tools. In Proceedings of the 39th International Conference on Software Engineering

Companion ICSE-C ’17 (pp. 180–182). Piscataway, NJ, USA: IEEE Press. URL: https://doi.org/10.1109/ICSE-C.2017.76.

doi:10.1109/ICSE-C.2017.76.

Tao, Q., Wu, W., Zhao, C., & Shen, W. (2010). An automatic testing approach for compiler based on metamorphic testing

technique. In 2010 Asia Pacific Software Engineering Conference (pp. 270–279). IEEE.

Wang, P., Bao, Q., Wang, L., Wang, S., Chen, Z., Wei, T., & Wu, D. (2018a). Software protection on the go: A large-scale

empirical study on mobile app obfuscation. In Proceedings of the 40th International Conference on Software Engineering

(ICSE 2018).

Wang, Y., Zhang, C., Xiang, X., Zhao, Z., Li, W., Gong, X., Liu, B., Chen, K., & Zou, W. (2018b). Revery: From proof-of-

concept to exploitable. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security

(pp. 1914–1927). ACM.

Xu, H., Zhou, Y., Kang, Y., & Lyu, M. R. (2017). On secure and usable program obfuscation: A survey. arXiv preprint

arXiv:1710.01139 , .

Yalcin, K., Cicekli, I., & Ercan, G. (2022). An external plagiarism detection system based on part-of-speech (pos) tag n-grams

and word embedding. Expert Systems with Applications, 197 , 116677.

Zalewski, M. (2019). American fuzzy lop. URL: http://lcamtuf.coredump.cx/afl/.

33

http://doi.acm.org/10.1145/2228360.2228377
http://doi.acm.org/10.1145/2228360.2228377
http://dx.doi.org/10.1145/2228360.2228377
https://doi.org/10.1109/ICSE-C.2017.76
http://dx.doi.org/10.1109/ICSE-C.2017.76
http://lcamtuf.coredump.cx/afl/

	Introduction
	Motivating Examples
	ObfSec: The Security of Obfuscation
	Generation phase
	Triage phase
	Cross-Testing phase

	Experimental Setup
	Research Questions
	Obfuscation Engines and Strategies
	American Fuzzy Lop
	Dataset
	Error Codes and Exploits

	Evaluation
	Fuzzing the Obfuscation is not Challenging
	On How the Obfuscation Changes the Type of Crash
	On How the Obfuscation Changes Vulnerabilities
	Analyzing Patterns in Error Changes

	Discussion
	Related Work
	Conclusions

