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HALE-IoT: HArdening LEgacy Internet-of-Things
devices by retrofitting defensive firmware

modifications and implants
J. Carrillo-Mondéjar, Hannu Turtiainen, Andrei Costin, J.L. Martı́nez, and G. Suarez-Tangil

Abstract—Internet-Of-Things (IoT) devices and their firmware
are notorious for their lifelong vulnerabilities. As device infection
increases, vendors also fail to release patches at a competitive
pace. Despite security in IoT being an active area of research,
prior work has mainly focused on vulnerability detection and
exploitation, threat modelling, and protocol security. However,
these methods are ineffective in preventing attacks against legacy
and End-Of-Life devices that are already vulnerable. Current
research mainly focuses on implementing and demonstrating the
potential of malicious modifications. Hardening emerges as an
effective solution to provide IoT devices with an additional layer
of defense.

In this paper, we bridge these gaps through the design
of HALE-IoT, a generically applicable systematic approach to
HArdening LEgacy IoT non-low-end devices by retrofitting
defensive firmware modifications without access to the origi-
nal source code. HALE-IoT approaches this non-trivial task
via binary firmware reversing and modification while being
underpinned by a semi-automated toolset that aims to keep
cybersecurity of such devices in a hale state. Our focus is on
both modern and, especially, legacy or obsolete IoT devices as
they become increasingly prevalent. To evaluate the effectiveness
and efficiency of HALE-IoT, we apply it to a wide range of
IoT devices by retrofitting 395 firmware images with defensive
implants containing an intrusion prevention system in the form
of a Web Application Firewall (for prevention of web-attack
vectors), and an HTTPS-proxy (for latest and full end-to-end
HTTPS support) using emulation. We also test our approach on
four physical devices, where we show that HALE-IoT successfully
runs on protected and quite constrained devices with as low as
32MB of RAM and 8MB of storage. Overall, in our evaluation,
we achieve good performance and reliability with a remarkably
accurate detection and prevention rate for attacks coming from
both real CVEs and synthetic exploits.

Index Terms—cybersecurity, IoT, devices, legacy, end-of-life,
EOL, firmware, firmware modification, retrofit security, defensive
techniques, WAF, HTTPS, SSL-proxy

I. INTRODUCTION

Internet-Of-Things (IoT) devices have notoriously vulnera-
ble firmware [1]–[3]. Exploiting these vulnerabilities is often
trivial, an example being the case of the infamous Mirai
botnet [4]. Unfortunately, keeping the firmware of these de-
vices updated is challenging. First, in many cases a firmware
update or a patch is simply not available. This is a prevalent
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problem due to the number of legacy devices connected
to the internet [4]–[9]. Second, firmware is built-in to the
devices, while automated — Over-The-Air (OTA) — firmware
updates are generally not implemented or still have limited
adoption [10]. Updating IoT devices, when and if available,
may require fairly technical manual intervention, including
having admin access and reflashing the device, and can prove
challenging and error prone even for experienced users. These
difficulties foster a culture of bad security hygiene around IoT.
As a result, many IoT devices are left vulnerable, with dire
and long-lasting consequences [11]. For instance, researchers
recorded over 1.5 billion attacks against IoT devices in the first
half of 2021 [12]. In this context, just one single vulnerability
(CVE-2021-28372) [13] affected around 83 million devices,
while some others (e.g., CVE-2013-7471) have been active
for years and are still seen in the wild1.

In the absence of regular updates, bastioning IoT devices
and hardening potentially vulnerable services emerge as first-
line defense strategies. The Center for Internet Security (CIS)
offers pre-hardened images and hardening checklists that have
been adopted by the research community, which includes
mechanisms to disable non-essential services [14]. While
this reduces the attack surface, essential services may still
suffer vulnerabilities [15]. Furthermore, existing approaches
like [14], [16] do not address the constraints and the hetero-
geneity of modern IoT devices. Thus, applying off-the-land
defenses at the network level, like third-party firewalls, has
already been the subject of research [17]–[19]. The next line
of defense includes retrofitting active [20], [21], and retroactive
defenses [4], [22]. Retrofitting defenses into IoT devices offers
the same advantages as general-purpose hardening, while
enhancing their security mechanisms even without the support
of the manufacturer.

Retrofitting security to legacy IoT devices faces many
challenges. First, the firmware stock is large and hetero-
geneous, so non-generic solutions hinder the adoption of
this defense. Second, injecting externally compiled code and
then expecting it to tightly co-exist with the firmware is
a challenging and error prone process. Third, IoT devices
generally have constrained resources and I/O interfaces, so
they cannot easily accommodate arbitrary defensive solutions
(e.g., IDS, antivirus) that are useful good defending traditional
computing devices (e.g., PCs, laptops, servers). Constrained by
such challenges, existing approaches are limited in the scope

1See timeline in: https://vuldb.com/?id.136365
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of their implementation. For instance, Cui and Stolfo [20]
present a binary-patching tool called Doppelgänger that only
offers in-practice protection against rootkits. Doppelgänger is
essentially a memory integrity monitor that computes hashes
of memory regions where “critical system processes” are
mapped. The system then monitors changes in the hashes
as a way to detect function hooking and other types of
code injection. While Doppelgänger can compute and monitor
hashes for any arbitrary memory region, identifying and under-
standing those regions requires considerable human expertise.
Thus, approaches such as Doppelgänger [20] do not scale
in practice, and cannot be deployed systematically. Other
works focus on hardening particular types of web applications
against XSS and SQLi [15] attacks. However, these approaches
rely on modifying the web interpreters, which requires: i)
deep software modifications; ii) intimate knowledge of the
targeted technology (e.g., PHP); iii) tedious pre-automation
taint annotations (e.g., sensitive sinks); and iv) access to source
code.

To address existing shortcomings, we use a concept
similar (yet somewhat distinctive) to Symbiotic Embedded
Machines [20] to design a systematic approach to hardening
legacy non-low-end IoT devices. For clarity, we try to
outline HALE-IoT’s encompassing definition of non-low-end
IoT device. In the most general sense, at present HALE-IoT
targets the “Type-I: General purpose OS-based devices” (e.g.,
Linksys EA6300v1 with Cortex A-9) as defined by Muench
et al. [23] in their state-of-the-art work. Our distinction
between non-low-end vs. low-end devices is also generally
in line with that in [23]. In other words, from a HALE-IoT
perspective, “Type-II Embedded OS-based devices“ mapping
to MCUs such as ARM7TDMI-S with flash memory in
the range of 512-1024 KB and RAM memory 58-98 KB
(e.g., Foscam FI8918W), and “Type-III: Devices without an
OS-Abstraction” mapping to MCUs such as Cortex M-3
with flash memory in the range of 16-1024 KB and RAM
memory 80-256 KB (e.g., STM Nucleo-L152RE), would
qualify as low-end devices, and are therefore unsupported in
present iteration of HALE-IoT . Certainly, the taxonomy of
device types defined in [23] is one of many possible, and
taxonomy definition is strongly influenced by the problem
space at hand. However, to date, that of Muench et al. [23]
best reflects the research perspective to which HALE-IoT
applies. In addition, due to the binary and configuration sizes
of HALE-IoT (§ IV-C, V-E), we do not aim for devices
with less than 32MB RAM and less than 8MB storage.
A direct consequence of this is that microcontroller/MCU-
based IoT devices (such as MSP430, ARM Cortex-M0 and
similar ARM MCU families) are exclued at this stage of
HALE-IoT development owing to their total/free RAM and
storage limitations. Moreover, HALE-IoT currently works
for Linux-derived or BusyBox-based systems, which almost
by default excludes MCU-based IoT devices, as Linux is
particularly challenging to scalably run on MCU devices,
though an exception exists for MCUs running uClinux [23].
As we demonstrate later in the paper, HALE-IoT successfully
supports not only powerful boards such as Raspberry Pi, but
an additional wide range of such “Type I” [23] devices, as

depicted in Table IV. We show that HALE-IoT successfully
runs on quite constrained devices with as low as 32MB
of RAM and 8MB of storage, parameters that in our view
absolutely qualify HALE-IoT to support a wide-range and
large-numbers of commercial off the shelf (COTS) devices.
With HALE-IoT , we essentially retrofit complex defense sys-
tems into raw firmware binaries via systematic yet minimally-
intrusive low-level modifications that do not require access
to the original source code. Our approach differs from the
state of the art in several ways. First and foremost, we
design a generically-applicable framework to provide reliable
security and protective standards to legacy firmware. Second,
we develop a systematic testing methodology that constitutes
the first benchmark to assess the effectiveness of retrofitting
defensive firmware modifications.

We developed a cross-platform system, called HALE-IoT ,
that at the time of writing successfully runs on at least MIPSeb,
MIPSel, ARMel, and Intel 80386 architectures. HALE-IoT
incorporates several industry-standard security tools. We de-
vised a battery of tests using real-world attacks, particularly
focusing its evaluation on fuzzing the web interface, for two
main reasons. One is that the web-interfaces are well known
to be exposed and lacking security in many aspects [24], [25],
while IoT devices are often proven to have their web-interfaces
highly vulnerable and exposed [2], [3]. Another reason is
that, as several studies have reported, (I)IoT devices are much
more often run missing, lax, or insecure SSL/TLS implementa-
tions [26]–[29], and make insignificant contributions to secure
TLS [26].

We note that while our evaluation reports detection rates,
its main focus is not to assess how well HALE-IoT detects
and prevents real-world attacks. In essence, HALE-IoT embeds
industry-standard protection mechanisms such as have been
widely tested before, e.g., Web Application Firewall (WAF)
such as Raptor [30]. Our aim is to assess whether the retrofitted
defensive mechanism can effectively (i.e., detect and protect)
and correctly co-exist within the retrofitted firmware without
preventing normal use of the system (e.g., not crashing it).
This is important, as software projects such as full-fledged
WAFs are fairly sophisticated. To the best of our knowledge,
no prior work has attempted and assessed the feasibility of
implanting sophisticated frameworks2 into IoT firmware.

We evaluated the effectiveness of our methodology using
395 different firmware images from a wide range of ven-
dors, including D-Link, Netgear, Linksys, TRENDnet, and
OpenWrt. We emulate those 395 firmwares using a similar
procedure as in the state-of-art works [2], [3]. Due to the
difficulty of acquiring hardware for all vendors, we restrict
our bare-metal evaluation to four physical devices (Table IV)
featuring 32MB to 1024MB of RAM and 8MB to 4096MB of
storage, while representing both ARM and MIPS architectures
as well as open-source and proprietary hardware and firmware.
At the same time, we note that our current efforts do not
attempt to test HALE-IoT in the “long trail” of architectures

2For instance, at the time of writing, Raptor has an estimated 22700 LoC,
and SSL-proxy with Golang has an estimated 8600 LoC. Raptor and Golang
are two of the frameworks we systematically retrofit.
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(e.g., niche architectures and targets not supported by GCC3,
nor on architectures that are supported but are not widespread,
the same way we do not claim that HALE-IoT works on low-
end and very constrained targets such as MSP430). A more
extensive evaluation is part of future work.

Our main contributions are summarized as follows:
1) We develop a generic methodology supported by a system

architecture and a reference implementation for hardening
legacy IoT devices via defensive firmware retrofitting and
implants. To the best of our knowledge, this is the first of
its kind.

2) We evaluate the effectiveness of our methodology by test-
ing it on potentially vulnerable and insecure web-interfaces
of a large and diverse set of IoT vendors and devices.

3) We identify and derive several core challenges of this
problem space that require further attention and research.

The rest of the paper is organized as follows. We first
present the overall applicable threat model in Section II.
Then, we introduce and detail the HALE-IoT architecture
and methodology in Section III. In Section IV we detail
the experimental setup, the datasets. We present the testing
methodology and the results in Section V. We then discuss
challenges and future improvements in Section VII. We present
and discuss related work in Section VIII. Finally, we conclude
the paper with Section IX.

II. THREAT OVERVIEW

There are millions of devices connected to the Internet that
shape the way users interact with technology. These devices
have many attractive features that make them popular. Unfor-
tunately, many of these devices lack basic security and privacy
protections. This leaves IoT devices exposed to major security
issues ranging from insecure configurations and protocols (i.e.,
Telnet, HTTP) to outdated software with known vulnerabilities
and public exploits.

From an attacker’s point of view, IoT devices are very
attractive due to the weaknesses they present and the absence
of IoT-centered defensive tools (e.g., Antivirus, Intrusion De-
tection System (IDS). Mirai is a proof of this. Mirai, the first
malware specifically designed to infect IoT managed to infect
around 600,000 devices [31]. Unlike the early versions of
Mirai, which used only a set of usernames and passwords
to gain access to IoT devices via insecure Telnet and SSH
configurations, IoT malware currently incorporates a wide
portfolio of exploits for N-days vulnerabilities in order to
gain access and install and spread their malware [32]. In
particular, in a large number of cases they (ab)use CVEs for
web-interfaces [33]–[35].

IoT devices often require network management interfaces
for their configuration and maintenance (i.e., Telnet, SSH,
HTTP), due to the lack of interactive interfaces like the ones
offered in desktop computers (i.e., mouse, keyboard, video).
Consequently, these network services are exposed to attackers,
causing well-known security issues, as shown in [2], [3], [36].
In [2], the authors performed a large-scale analysis of web

3https://blog.yossarian.net/2021/02/28/Weird-architectures-werent-support
ed-to-begin-with

services provided by different IoT devices, discovering 225
high-impact vulnerabilities (i.e., Command execution, Cross-
Site Scripting (XSS)) verified through dynamic analysis, and
around 9000 possible vulnerabilities reported through static
analysis in 185 firmware images that were analyzed. These
security issues, coupled with shortage of security updates or
patches, make IoT devices an attractive target for attackers,
allowing them to create large botnets or to mine cryptocur-
rency [37], [38].

A. Threat Model

Because of HALE-IoT’s architecture and the evaluations
performed (i.e., HTTP and WAF), when building our threat
model we reference the generalized threat model for WAFs,
based on the extensive state-of-the-art survey by Li et al. [39]:
“(1) the web application itself is benign (i.e., not hosted or
owned for malicious purposes) and hosted on a trusted and
hardened infrastructure (i.e., a trusted computing base, in-
cluding OS, web server, interpreter, etc.); and (2) the attacker
is able to manipulate either the contents or the sequence of
web requests sent to the web application but cannot directly
compromise the infrastructure or the application code.”

Therefore, the overall threat model of HALE-IoT could
be seen as a generalized form of the threat model by Li
et al. [39], and could be summarized as:

1) the entire firmware and underlying OS is benign (i.e.,
not hosted or owned for malicious purposes) and
hosted on an original, trusted, or hardened device
or infrastructure (i.e., a trusted computing base,
including OS, web server, interpreter, etc.); and

2) the attacker is able to manipulate either the contents
or the sequence of network requests (e.g., HTTP
requests, FTP and Telnet commands, lower-level net-
work packets) sent to the device firmwares but cannot
or did not directly compromise the infrastructure
or the application/firmware code prior to connecting
the device to the internet or infrastructure (namely,
supply chain attacks).

Focusing on the threat model in more detail, we consider a
legacy device with Linux-derived or BusyBox-based firmware
with network services (e.g., HTTP, FTP) that are vulnerable to
known attacks publicly available on the Internet. We consider
N-day vulnerabilities because they are the ones that primarily
endanger the security of IoT devices [40] and the ones that
are easily exploitable with the help of IoT device scanners
[36]. Our threat model can also consider zero-day attacks,
as long as they only target hardened services that no longer
become exposed to the internet after applying HALE-IoT’s
methodology (e.g., Telnet). Our work is focused on hardening
legacy systems for which there are no security updates from
the manufacturer.

To harden IoT devices via defensive firmware retrofitting,
we proceed with the following assumptions. First, we have
access to the firmware image of the device (e.g., downloaded
from Internet [1], extracted from device [41]). This allows
us to modify the file system and update the device with
the hardened-modified firmware version, though there are

https://blog.yossarian.net/2021/02/28/Weird-architectures-werent-supported-to-begin-with
https://blog.yossarian.net/2021/02/28/Weird-architectures-werent-supported-to-begin-with
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exceptions when we do not even require access to the firmware
nor firmware’s modification (§ VI-E). Second, there is storage
on the device to add new binaries that will take care of
listening on the service’s original interface and port, so that
it wraps everything around a WAF to its original service.
This allows the original functionality of the device to remain
unaffected. The security of the WAF is out of the scope of this
paper, as it is both research-wide and industry-wide accepted
methods for securing web-apps [39]. Therefore, we assume
that adding a WAF as part of the HALE-IoT methodology
increases device security. (We discuss the limitations of WAFs
in Section VIII-D.) Third, it is possible to re-configure the
original web server through configuration files or scripts, that
is, we can change the interface and port in which the original
service is bound. Fourth, we consider vulnerabilities that can
be triggered through a web request. The type of vulnerability
exploited will belong to the category of errors in user input
validation [39], to which correspond vulnerabilities involving
SQL injection, command injections and path traversal, among
others. Finally, we assume that new vulnerabilities will appear
in the future and that the rules or software will need to be
updated.

With these assumptions in mind, the next section introduces
HALE-IoT , a methodology designed to offer an extra layer of
security to IoT devices, focusing on the protection of the core
and the most vulnerable services exposed to the Internet by
IoT devices.

III. HALE-IOT

This section introduces the main components of our system.

A. Methodology & System Overview

HALE-IoT is a system designed to harden IoT devices. With
the wide spread network of obsolete IoT devices in mind, our
system focuses on legacy and End-Of-Life (EOL) firmware
for the following reasons: devices with legacy firmware i)
are prone to be vulnerable; ii) are extremely likely to expose
exploitable services leading directly to breaches; iii) and will
almost certainly never get a security patch. In Figure 1 we
depict a high-level view of a hardened IoT firmware/device.
From the point of view of firmware’s “inner components”, the
diagram captures two dimensions: 1) “vulnerable services”–
the services that will eventually be spawned when loading the
firmware (e.g., a web HTTP server, Telnet, FTP); and 2) “file
system”–the original file system itself, where the binaries and
the configuration of such potentially vulnerable services reside.
The diagram also represents the entry point of these services,
typically a network interface. A service can listen to different
interfaces at the same time (e.g., Wireless or Wide/Local Area
Network, WLAN and WAN/LAN, respectively). We represent
as 0.0.0.0 a generic network interface that is very likely to be
attacker-accessible.
Methodology: We follow three core principles that under-
pin the development methodology of HALE-IoT . First, the
hardening process has to be generic and flexible to accom-
modate the most popular services available in IoT devices.
We also require that the system can accept the integration

of generic protection mechanisms that match in complexity
the type of attacks that generally target IoT devices. Second,
we follow the fail-safe minimization principle [42] by which
the modifications we introduce during the hardening process
should be as unintrusive as possible, always preserving the
normal operation of the device. In other words, HALE-IoT will
make minimal changes to the firmware, having its main focus
first hardening the system via re-configuration, then patching
existing configuration files, only proceeding to make code-
level modifications (namely, binary patching) as a last resort.
Only in situations when binary patching is necessary, we apply
a two-fold strategy: the analysis phase—a human-guided semi-
automatic process that produces a proof-of-concept; and the
deployment phase—which can reproduce the patching and
retrofitting at scale in a fully automated fashion.
System design: HALE-IoT leverages the methodology above
to design a practical system that addresses the challenge of
hardening heterogeneous devices from the following angles:

• Secure frontend. This step aims to harden insecure services
through the deployment of wrapper(s) designed to turn a
possibly vulnerable service into a secure one. HALE-IoT
will expose a secure interface of the service and will act as a
proxy of the actual service while offering certain guarantees,
such as confidentiality and secured access control. Central to
this step is the retrofit of a Secure Socket Layer (SSL), or
Transport Layer Security (TLS), proxy that will: 1) offer
a cryptographic upgrade if the device lacks it, including
the use of HTTPS instead of HTTP, SFTP instead of FTP,
or SSH instead of Telnet; and 2) offer protection against
SSL/TLS attacks (e.g., downgrade, MITM — Man In The
Middle), and patch weak SSL/TLS configurations (e.g.,
hardcoded self-signed certificates).

• Proactive attack detection. This steps aims to offer a proac-
tive protection against application-layer attacks through the
retrofit of a domain-specific firewall. For instance, HALE-
IoT will implant a WAF when an IoT device processes web
HTTP connections either directly from the user through a
web browser or a RESTful client.

• Advanced-level access. This step aims to harden a critical
component of IoT devices, their admin interface. IoT devices
do not generally have a graphical user interface, and their
administration is generally done remotely.

The result of applying our methodology to hardening a generic
IoT device is presented in Figure 1. In this paper, we offer an
implementation of HALE-IoT that can scale the deployment
of pre-hardened images for vulnerable legacy firmware that
can benefit from a secure front end. We assume that these IoT
devices expose services through the network while listening to
a port through a socket. Our system performs best when there
is a configuration file that specifies the network settings, and
we restrict binary patching only to changes in the interface
or the port number when these are hard-coded into the binary
(§ VII-F). Note that more intrusive modifications are subject
to less automation, thus making the solution less scalable and
cost-effective. Also, more-intrusive modifications are highly
likely to interfere with the normal intended operation of the
given service, or even the entire device. While our methodol-
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Fig. 1. IoT firmware system diagram after hardening with HALE-IoT (shows also long-term vision for additional hardening at layers L3-L4, L7).

ogy supports any type of binary patching, assessment of the
impact they have on the fail-safe minimization principle is in
the scope of our future work. We next describe in detail each
of the three layers that constitute HALE-IoT .

B. Secure Front-End: SSL/TLS Hardening

An SSL/TLS Proxy is a specific type of proxy server
designed to add a layer of SSL/TLS to protocols that lack
this feature. For example, it is commonly used for adding
HTTPS encryption to plain-text HTTP services without native
HTTPS support. It is mainly responsible for the encryption
and decryption of SSL traffic between the client and the server,
and redirecting the packets, once decrypted, to the HTTP web
server. As mentioned, the rationale behind adding an SSL/TLS
proxy is driven by the prevalence of IoT devices running
insecure or weakly secured HTTP implementations [27]–[29]
that give a false sense of security.

In our implementation, we used two approaches to
SSL/TLS proxying: SSL-proxy [43] as the main approach, and
lighttpd [44] as an alternative approach. SSL-proxy is a project
written in the Golang programming language. SSL-proxy
features a high portability to other systems, making it a good
candidate for systems that require multiple architectures. SSL-
proxy allows self-signed certificates to be generated as well
as working with existing certificates and full certificate chains,
that are stored locally or generated through Let’s Encrypt [45],
[46]. For SSL-proxy cases, our toolsets generate Go binaries
for the different architectures HALE-IoT supports, and then use
the same SSL-proxy code in corresponding interpreted envi-
ronments. As an alternative to SSL-proxy, we cross-compiled a
statically-linked version of lighttpd with SSL/TLS and proxy
support, which, similarly to SSL-proxy, supports self-signed
certificates or certificates generated through Let’s Encrypt. In

practice, it was only necessary to use lighttpd-based TLS proxy
for the real device presented in Section VI-D; however, this
lighttpd-based setup was also successfully tested on several
other devices. For the purpose of our experiments, we used
self-signed certificates, but we later discuss deployment issues
in Section VII-G. However, the main idea of adding SSL-proxy
is to provide any IoT device a guaranteed and uniform HTTPS
support (e.g., latest TLS protocols) that can also operate proper
full certificate chains [27]–[29].

C. Proactive Detection: Application-layer Firewall Hardening

A generic Application-layer Firewall (xAF) is a type of
firewall that can potentially detect and prevent malicious
inputs designed to exploit specific application protocols. Our
architecture allows the retrofit of multiple xAFs, one for every
potentially vulnerable network service. Therefore, HALE-IoT
can both isolate local networks (from 0.0.0.0 to 127.0.0.1),
and harden traditionally vulnerable services such as Telnet
(secured with SSH), FTP (secured with SFTP), UPnP, MQTT.
This architectural vision is presented in Figure 1.

Our current implementation of HALE-IoT methodology
primarily offers support for hardening web services at the
application level. A Web Application Firewall (WAF) is an
additional security layer that inspects web requests before
redirecting them to their destination, allowing it to detect
potentially malicious requests and avoid redirecting them to
the web server or to the web application. When a mali-
cious request is detected, the WAF is supposed to prevent
the request from reaching the web server, being able to
detect the most common attacks at the web application level
such as Structured Query Language injection (SQLi), Remote
Command Execution (RCE) injections, Cross-Site Scripting
(XSS), or Cross-Site Request Forgery (CSRF) attacks. In



6

particular, we use Raptor [30], which is a lightweight open-
source WAF written in the C programming language. It has
very few dependencies, making it a good candidate for use in
embedded systems. Raptor adds an additional security layer
that protects web applications by comparing the content of
HTTP requests with common signatures using a Deterministic
Finite Automata (DFA) algorithm. Additionally, its function-
ality can be extended with rules and other matching strings
algorithms, such as Karpe Rabin, Boyer Moore Horspool,
or Perl-Compatible Regular Expressions (PCRE). We cross-
compile Raptor for the MIPSeb, MIPSel, ARMel, and Intel
80386 architectures, which are the ones currently supported
by HALE-IoT . However, there is virtually no limitation to
which CPU platforms Raptor (or any other WAF) can be
cross-compiled for. At the same time, HALE-IoT could implant
any other WAF as long as it can be either cross-compiled
to native binary format for a device’s CPU, or can run in a
cross-compiled runtime environment (e.g., Python, Go). The
only unavoidable limitation our system inherits stems from the
constraints of the actual devices in terms of obsolescence of
runtime, RAM memory, and flash storage (§ VII-E, VII-H).

D. Administration of HALE-IoT

HALE-IoT is composed of third-party components (e.g.,
WAF, xAF, HTTPS proxy) that may require bug-fixes, im-
provements, and configuration updates over time. For example,
there is also a constant evolution of the threat landscape (e.g.,
applicable vulnerabilities, working exploits) against which
HALE-IoT offers protection to (legacy) IoT devices, and as
such requires updates to the rules-sets of WAF, xAF. These and
similar related factors dictate the need for a way to administer
HALE-IoT in an easy, secure, universal, and low-footprint
manner. A classical way would be to use a web-interface
to administer HALE-IoT , but here we opt for an SSH-based
administration.

There are several reasons why we chose the use of an SSH-
based interface for HALE-IoT administration instead of, for
example, a web-based administration interface. First, SSH by
default has a proven and strong built-in authentication and
authorization mechanism and protocol based on public-private
key infrastructure (PKI). In the case of web servers, it would
require adding HTTP and/or HTML authentication models,
which would add to the complexity of implementation and
maintenance as well as potentially expose its own set of
authentication/authorization vulnerabilities. Second, compared
to a web-interface, SSH does not require additional third-
party dependencies and interpreters (e.g., PHP, Python) to pro-
vide full-fledged server-side functionality. With an SSH-based
approach, the overall “application attacks surface” scheme
remains generally the same even after adding the new SSH
dependency. The web-interface option, on the other hand,
would increase the attack surface through addition of the
web server and the admin web pages themselves. Third, SSH
provides a simple yet powerful interface for performing addi-
tional system-administration tasks should the need arise (e.g.,
reboot, power-off, filesystem access). In the case of a web-
interface, there may be certain limitations to the administrative

actions that would be available to the web server or the web
pages. Last, but not least, efficient SSH implementations can
be statically built with much lower footprint and overhead
(e.g., Dropbear SSH at 100–200 KB). Such footprints are con-
siderably lower than most web servers coupled with runtime
interpreters (e.g., lighttpd + PHP).

E. Other Types of Hardening

The simplicity and flexibility of the HALE-IoT approach is
one of its core design principles (as stated in Section III-A),
which is one of its strengths compared to the current state
of the art. An additional improvement by HALE-IoT would
be the addition of hardening at networking layers L3-4 and
L7. In essence, it would mean protecting all the interfaces
and all the services in a generic whole-system manner against
network layer attacks (L3-4), as well as against application
layer brute-force attacks (L7). For layers L3-4, HALE-IoT’s
architecture can integrate industry-standard tools like iptables,
Snort, Suricata, Bro, and fail2ban for layer L7.

There are several adoption challenges that need to be consid-
ered. First, some IoT devices may not expose direct or standard
access to various interfaces, thus requiring more intrusive re-
configuration, binary patching, or OS/kernel “hacks.” Second,
since some IoT devices may use less common OS flavors (i.e.,
other than Linux-derivatives), re-binding and configuration of
network interfaces may be different and may require certain
HALE-IoT implementation adaptations. We thus leave the
implementation and evaluation of additional L3-L4 and L7
retrofits as immediate future work.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness and efficiency of the HALE-
IoT method, we applied it to web services of a wide-range of
IoT devices. We chose to harden and evaluate web services as
the immediate focus, because these are the most commonly
present services on most IoT devices. For this, we retrofitted
and emulated 395 firmware packages with defensive implants
containing a WAF (for prevention of web-attack vectors), and
an HTTPS-proxy (for proper end-to-end HTTPS support).

In order to implant HALE-IoT , we identified the web server
configuration files and re-configured them for hardening as
follows. First, taking into consideration the firmware’s CPU
architecture, we copy corresponding cross-compiled files to the
firmware filesystem as the implants needed by HALE-IoT . This
includes executable and other files for the hardening elements
(Raptor, SSL-proxy, Dropbear), configuration and rules-set
files, and authentication keys for the HALE-IoT SSH sysadmin
interface. Then, we add the initialization scripts of the tools
to the set of scripts that will be executed once the booting
process finishes (e.g., init.d, rc.d, registration.d). Finally, we
re-configure the web server configuration files or web server
initialization scripts to isolate the interface and listening port of
the service (e.g., original web server re-bind to 127.0.0.1 : 81),
and then we start full-system firmware emulation [2], [3]. This
process was fully automated, and was carried out for each test
of the evaluation.
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TABLE I
OUR INITIAL FIRMWARE DATASET (BY VENDOR AND ARCHITECTURE)

Vendor ARMel MIPSeb MIPSel Intel/386 Total HALE-IoT
Asus 0 0 1 0 1 0
Belkin 4 10 30 0 44 0
Buffalo 1 0 2 0 3 0
D-Link 76 54 1 0 131 37
Huawei 0 0 1 0 1 0
Linksys 2 3 19 0 24 8
Netgear 45 174 150 0 369 46
OpenWrt 1 146 166 7 320 293
Tenvis 0 0 6 0 6 0
Tomato by Shibby 8 0 171 0 179 0
TP-Link 2 152 5 0 159 0
Trendnet 3 25 9 0 37 11
Ubiquiti 8 3 0 0 11 0
Total 150 567 561 7 1,285 395

A. Dataset

Our initial dataset consists of 4,809 real-world firmware
images extracted from FIRMADYNE [3]. Note that the original
FIRMADYNE dataset is larger, but 4,809 images are avail-
able to download at the time of writing. We then retain
only the images in the architectures that HALE-IoT currently
supports (i.e., ARMel, MIPSel, MIPSeb, and Intel 80386,
cf. Section III), making a total of 1,328. From these, we
discard 43 images that have a custom format compression
algorithm and thus cannot be systematically unpacked with
Binwalk [47] (which comes as part of the FIRMADYNE setup).
After processing all remaining images, we managed to extract
the root filesystem from 13 device vendors (ranging from Asus
to Ubiquity) for 1,285 images overall. Overall, these firmware
root filesystems are associated with devices of the following
type: Ethernet routers, WiFi routers, xDSL modems, and IP
cameras. Table I shows the distribution of vendors in our
dataset, per CPU architecture.

It is important to note that when trying to address such
an immense and heterogeneous experimental population and
space, for practical and resource reasons we are bound within
magnitudes that are feasible for handling such experiments.
At the same time, our work exceeds comparable experimental
state-of-the-art works such as Firmalice [48] (dataset size:
N = 3 samples), and generally positions our experiments
within the magnitude range of similar recent works such as
FIRMADYNE [3] and Costin et al. [2] (dataset size: N = K x
102, i.e., hundreds of samples).

B. Emulation

To evaluate HALE-IoT , we emulate a device that runs the
firmware images in our dataset. Since we are mainly interested
in systems that have a Web interface to administrate the device,
we next describe the steps we take to select those images. We
first scrape the file system of the image to look for binaries
that are core components of a Web server (e.g., uhttpd). We
then identify the configuration files that inform settings to the
Web server (e.g., boa.conf, lighttpd.conf). Table II shows the
different types of web servers together with the number of
firmware images (marked as “FWs”). As expected, a large
subset of images have a web server configuration file together
with the server binary, an exception being uhttpd. Images
with a binary and without a configuration file have the server
settings embedded in the binary itself. To scale our evaluation,

TABLE II
DISTRIBUTION OF THE INITIAL FIRMWARE DATASET (BY WEB SERVER

AND CONFIGURATION FILES).

Web server # of FWs # of FWs
(config file)

# of FWs
(HALE-IoT)

lighttpd 58 52 42
httpd 649 74 68
minihttpd 37 0 0
AppDemo 71 0 0
boa 46 44 7
uhttpd 390 314 278
webs 2 0 0
goahead 9 0 0
Not found 23 0 0
Total 1,285 484 395

we focus primarily on the 484 images that have an explicit and
non-embedded configuration file.

We note that from architecture and design perspectives,
HALE-IoT can run virtually on any type of firmware as long as
the user(s) can change the binding network interface and port
of the service that we aim to harden. However, in certain cases
(e.g., service uses custom or binary-hardcoded configuration)
changing the network interface and the port may require more
manual effort, and we discuss such challenges in Section VII.
In the end, out of all 484 images that have a Web server
configuration file, we managed to successfully emulate and
implant HALE-IoT to 395 firmware images. The emulation
and HALE-IoT implant covers the following five vendors: D-
Link, Netgear, TRENDnet, Linksys, and OpenWrt (Table I)
and the following four web servers: lighttpd, httpd4, boa, and
uhttpd (Table II). Once the emulation started, we were able to
successfully communicate with all 395 web server processes
and, more importantly, we were able to retrofit the HALE-IoT
security hardening measures in all of these firmware images.

C. Toolsets

One key aspect of HALE-IoT is that it supports different
out-of-the-box CPU architectures and is flexible enough to
keep adding more architectures and defenses in the future. In
particular, we compile our framework for ARMel, MIPSel,
MIPSeb, and Intel 80386, as previously discussed. While it
is possible to use QEMU to emulate each operating system
used by the different vendors, we opt to perform a systematic
cross-compilation through a toolchain. There are different
toolchains available, including Linaro [49], or Linux MIPS
Toolchain [50]. For the purpose of this paper, we created our
own customized toolchain using Buildroot [51]. Our toolchain
uses musl [52], which implements the standard C library
with some improvements, such as enhanced support for static
linking. When cross-compiling the different binaries using our
toolchain, we strip the binary of all symbols to optimize size.
At present, we automatically cross-compile Raptor (for WAF),
and Dropbear (for HALE-IoT SSH-based administration) for
all the supported architectures. We do not cross-compile SSL-
proxy, as it is written in the Go programming language and the

4In most IoT devices we encounter, “httpd” is just a generic placeholder
name for the web-server, and should not be assumed to be Apache’s HTTP
server.
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binaries for the different architectures can be generated directly
without using a specific toolchain. Final builds of the toolsets
resulted in the following footprints: Raptor 275.8–346.6 KB,
SSL-proxy 5053.5–6244.3 KB, Dropbear SSH 179.8–228 KB,
and lighttpd 2381–3018 KB. For additional resource overheads
incurred from HALE-IoT implant, see Section V-E.

It is important to note that our experimental setup is
systematic and easily extensible to other architectures and
defensive toolsets, which is precisely the scope of our future
work, as discussed in Section IX.

V. TEST METHODOLOGY AND RESULTS

A. Test Methodology

We run two tests for each QEMU-emulated firmware fol-
lowing a DevOps methodology [53], [54]. This methodology
evaluates changes into a system in an incremental fashion so
that failure causality can be properly attributed. One test con-
tains a hundred common (i.e., non-exploiting) web requests,
while the other test has a hundred web requests with some type
of web-attack payload (e.g., XSS, SQLi, Command Injection).

Our DevOps-style testing methodology has the following
steps. First, we emulate the firmware without any kind of
modification and run the tests as a control measure to evaluate
the differences. We also check how many firmware images
accept connections through the HTTPS. Then, we retrofit the
firmware with the Raptor WAF and launch both tests again.
We do the same again but only after implanting the SQL-proxy
in the firmware. Finally, we launch both tests on the firmware
emulated with both protection measures retrofitted, that is, the
Raptor WAF and the SQL-proxy working together. We also
ensured that random non-malicious requests return exactly the
same result in both tests (i.e., with and without HALE-IoT).
By comparing the HTTP headers and the content returned in
both test setups (normal vs. non-malicious) requests. To assess
the performance of the devices after retrofitting the WAF in
a realistic setting, we use Raptor’s DFA algorithm and fifty-
five regular Perl-Compatible Regular Expressions (PCRE) we
gathered from the community [55], [56].

We apply our test methodology to answer the following
questions:

Q1) Is HALE-IoT able to retrofit defensive firmware mod-
ifications and implants without disrupting the normal
operation intended for the firmware?

Q2) Can HALE-IoT effectively deploy a secure front-end in
legacy devices?

Q3) Can HALE-IoT effectively deter known attacks and known
vulnerabilities against legacy devices?

Q4) Can HALE-IoT effectively cover multidimensional het-
erogeneity (e.g., physical vs. emulation, ARM vs. MIPS
vs. x86, real CVEs vs. synthetic vectors, open-source vs.
proprietary, cross-vendor)?

Q5) What is the potential performance overhead incurred by
HALE-IoT?

Q6) Can HALE-IoT actually work with services that appar-
ently cannot run on 127.0.0.1 :< port > via configura-
tion file?

Q7) Finally, does HALE-IoT actually work on physical de-
vices, rather than just emulated environments?

We evaluate Q5 using emulation only, Q7 using bare-metal
hardware only, and Q1, Q2, Q3, Q4, and Q6 using both bare-
metal and emulation.

B. Correctness and effectiveness of the Retrofit (Q1)

To test how well HALE-IoT retrofits defensive firmware
modifications, we deploy all hardened images in our own
emulator environment resembling the one in [2] and borrowing
additions from FIRMADYNE (e.g., NVRAM) [3]. Table III
shows a summary of our results. We see that all 395 images
remain functional, i.e., the hardening process does not disrupt
the normal operation intended for the firmware. However,
some cases underperform in terms of isolation. In particular,
we see that in 8% of the images we continue to see the web
server listening in the external interface (0.0.0.0), and thus
potentially exploitable connections to the original web server
are possible without going through our hardening proxy chain.
We also see that 78% of the emulated firmwares do not use
HTTPS by default before the retrofit. We next explore in detail
the performance of HALE-IoT when looking at the first layer
of its architecture (cf. III-B).

During our HALE-IoT experiments, neither our human experts
nor our automated tools have encountered any functional
abnormality, and the emulated-and-hardened web services,
along with the entire system emulation, performed normally
and as expected.

C. Secure front-end in legacy devices (Q2)

One of the main hardening goals of HALE-IoT is to isolate
the vulnerable services from attacker-accessible interfaces
(e.g., WAN, LAN), while at the same time keeping the original
services running on 127.0.0.1 to satisfy Q1. Our evaluation
shows that HALE-IoT successfully reconfigures original web-
servers from 0.0.0.0 : 80 into 127.0.0.1 : 81, replacing the
former address with the service running our WAF implant
while relaying only safe HTTP web requests to the original
web server now residing in the latter address5.

Further analyzing the results shown in Table III, we make
two key observations. First, 100% of the original web-servers
(from the successfully emulated 395) re-bind well to port 81 as
instructed by HALE-IoT’s re-configuration routines. Second,
despite being explicitly instructed to change binding from
0.0.0.0 to 127.0.0.1, there are 32 firmware images that remain
bound to 0.0.0.0 (in addition to the new address). This can
expose a potentially vulnerable service to attacker-accessible
interfaces, thus rendering our hardening ineffective. We posit
that this is due to vendors’ (un)intentional implementation
and coding choices or errors, where only some values from
the configuration file(s) are taken into consideration while the
rest of the parameters are either hardcoded into the binary
executable or taken from other non-obvious configuration files.
We evaluate HALE-IoT for this case in Section VI-A, and

5When WAF is chained with SSL-proxy, the WAF is further isolated to
127.0.0.1:80, and web service is exposed by SSL-proxy binding to 0.0.0.0:443.
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discuss this challenge in more detail in Section VII, but we
emphasize that this happens in only 8% of our images.

Another of our aims is to use SSL-proxy to add secure
tunnel wrappers around services. Our rationale is that these
services either have weak secure tunnels, or are just plain-text
altogether (i.e., adding HTTPS support to IoT devices that
quite commonly lack it). As discussed, in certain instances
the IoT device may provide an HTTPS server by default. In
84 emulated firmware images, the original web servers also
start a “default HTTPS server.” However, besides carrying
a self-signed certificate, the “default HTTPS server” also
featured an outdated SSL/TLS version (e.g., TLSv1), hence
very likely exposing the web interface to various HTTPS
and MITM attacks. On the other hand, with HALE-IoT (e.g.,
with SSL-proxy) we are able to provide the hardened IoT
devices with the latest and most secure TLS implementations,
along with the proper support for full certificate chains (see
also discussion in Section VII-G). This, in turn, provides real
increased security rather than merely a “sense of security”
provided by most default HTTPS servers when these are
implemented in IoT devices and working with self-signed or
expired certificates.

Overall, HALE-IoT automatically manages to fully isolate
92% of the potentially vulnerable web services, while cor-
rectly providing a secured SSL tunnel in 100% of the tested
cases.

TABLE III
CORRECTNESS AND EFFECTIVENESS OF THE RETROFIT 395 EMULATED

WEB SERVERS.

Test under evaluation # of emulated FWs (%)
Firmware is functional after retrofit 395 (100%)
Isolation OK (web service re-bind to 127.0.0.1) 363 (91.9%)
Isolation FAIL (web service hardcoded to 0.0.0.0) 32 (8.1%)
Default HTTPS present before retrofit 84 (21.3%)
Default HTTPS missing before retrofit 311 (78.7%)
HTTPS present after retrofit 395 (100%)

D. Detection and prevention of attacks and exploits (Q1, Q3)
To evaluate the performance of HALE-IoT in regard to its

second architectural layer (§ III-C), we perform two experi-
ments.
Automated-attacks. We leverage a battery of 200 web re-
quests, of which half are common requests and the other half
are known web attacks. The attacks include known XSS, SQLi,
and Command Injection attacks coming from both actionable
CVEs and synthetic input. Our results show that HALE-IoT
can detect all known attacks when configuring the vanilla WAF
community detection rules. The detection rate itself is not at
all surprising, but this experiment reports a valuable finding:
HALE-IoT can reliably retrofit complex defense mechanisms
into the firmware of IoT devices through binary retrofits while
keeping the original firmware functional (Q1), and offering
the full-fledged level of protection of the retrofitted secure
mechanism (Q3).
Targeted-evaluation. We also evaluate the effectiveness of
HALE-IoT by targeting some firmware images with CVE-
2016-1555 (also known as ACSA-2015-001). The CVE-2016-
1555 was independently discovered by Chen et al. [3] and

Costin et al. [2]. This known vulnerability covers a series
of pre-authentication XSS and RCE in several devices from
Netgear (many of which are already EOL, and therefore will
remain unprotected indefinitely unless it gets hardened with
HALE-IoT or similar). First, we exploit the vulnerabilities
in the emulated environment and confirm that the original
firmware is vulnerable and exploitable. Then, we apply HALE-
IoT to the emulated firmware and see that all attacks are
efficiently stopped. This further proves the effectiveness of
our approach, but this time with an attack that targets End-
Of-Life devices. We refer the reader to Appendix A for visual
representation of the success of our proof-of-concept attack
and defense.
Takeaway. HALE-IoT can effectively deter known attacks
against legacy devices. Naturally, our system inherits the
limitations of the defense mechanism we implant. In particular,
Raptor is mainly effective at detecting known attacks and
can miss connections that include zero-day web attacks. We
discuss this limitation in detail in Section VII through different
axes, including the WAF’s inherent limitations (§VII), and
limitations in the datasets (§VII-C). However, we also note that
the overall effectiveness of HALE-IoT when it comes to the
detection of attacks has to be seen from an holistic perspective.
In Section V-C, we report the effectiveness of our system at
hardening insecure (superfluous) services other than HTTP.
When putting together the secure front-end and the proactive
detection layers (Figure 1), HALE-IoT can offer a system
resilience to both known attacks against web services, and
against unknown attacks targeting all other hardened services.

With HALE-IoT implanted, we achieve a 100% detection
and prevention rate of known attacks in both emulated and
real-devices, while effectively hardening other services that
are often target of unknown (zero-day) attacks. This 100%
detection ratio is taken as a unit test rather than a detection
ratio. This provides assurances that the WAF we retrofit
works as expected under active attacks. We are aware that
WAF systems detect attacks for which there is a known rule,
and they are unquestionably subject to evasion, just like any
other rule-based detection system—whether the WAF is on
a high-end production system, VPN appliance, or a HALE-
IoT retrofitted router/camera. However, they provide an extra
layer of security that protects against known exploits targeting
the firmware’s web interface, and they prevent most automated
attacks (i.e., via bots looking for vulnerable devices) that target
vulnerabilities in the exposed web servers of IoT devices [5],
[36].

E. Functional, Performance, Overheads Evaluation (Q4, Q5)

We have collected measurements of the performance over-
heads introduced by various components of the HALE-IoT
implant. Since HALE-IoT is highly flexible and configurable,
we use a modular analysis to assess our performance. That
is, we measure the performance of the WAF alone, the SSL-
proxy alone, and the SSL-proxy chained with WAF. For
each test we collect benchmarks for the CPU and memory
consumption, as well as the response time of the web re-
quests. The performance evaluation in the emulation provides
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an approximation of the memory and CPU consumption as
the difference between runs with and without any type of
retrofitted tool.

In Figures 2, 3, and 4, the references to “WAF”, “SSL-
proxy”, and “WAF + SSL-proxy” represent the use of HALE-
IoT with a particular self-descriptive configuration, while
“Control” represents firmware emulation without any added
components. As we discussed in Section V, each test is
made up of one hundred common web requests represented as
“Normal”, and one hundred requests that contain some type
of attack represented as “Crafted.” We carry out all tests in
each firmware that we emulate and implant HALE-IoT into.
In total, our evaluation scripts made 316,000 web requests.
Figures 2, 3, and 4 represent the average of the results over
the entire set of emulated and tested firmware images. The
data was collected using common Linux tools (e.g., mpstat or
vmstat) from the host side.
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Fig. 3. Average CPU consumption for each test run.

We also provide an interpretation of the performance over-
head graphs. In Figure 2, we see that the response time
for “Normal” requests increases proportionally to the number
of chained components for the particular hardened service.
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Fig. 4. Average RAM memory consumption for each test run.

For example, “WAF + SSL-proxy” request time takes longer
than “WAF” or “SSL-proxy” separately. This is more or
less expected, as in the case of “WAF + SSL-proxy”, the
request is forwarded back and forth via multiple connections
and software modules that have their own context-switching
delays, etc. At the same time, Figure 2 shows that in the
case of “Crafted” requests, whenever the “WAF” component
is present, the complete request time is significantly lower
than ”Normal”. This is both expected and direct evidence
that the “WAF” effectively detects and blocks attack attempts,
and as such protectively terminates HTTP communications
carrying potentially malicious payloads at much earlier stages.
A similar pattern can be seen in Figure 3. In the case of
“Crafted” requests, whenever the “WAF” component is present
(e.g., when only “WAF” is present without “SSL-proxy), the
average CPU usage is lower than “Normal.” Once again,
this is both expected and direct evidence that the “WAF”
effectively detects and blocks attack attempts, as “WAF” does
not continue any further computations and processing (e.g.,
relaying it to the original web service) once it has detected
and prevented potentially malicious payloads.

Moreover, the average memory consumption increase shown
in Figure 4 is also expected, as the additional components
require memory for operation and for storing their data such
as WAF rules-sets and SSL/TLS certificate chains. However,
the memory consumption is harder to fully interpret than CPU
usage and processing time of requests, as the coding practices
can vary greatly across the applications. Also, as opposed to
CPU usage, which stops when a particular function flow stops
(e.g., HTTP request blocked and terminated), the memory is
often not immediately freed (or not made visibly available to
OS, even if freed by the application) when the program reach
certain states such as when a “Crafted” packet is detected and
blocked. In terms of storage overhead introduced by HALE-
IoT , Figure 5 shows the distribution of sizes for all firmware
images along with the retrofitted binaries. Specifically, as
detailed in Section IV-C, the increase by each components
is as follows: Raptor 275.8–346.6 KB, SSL-proxy 5053.5–
6244.3 KB, Dropbear SSH 179.8–228 KB.
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Fig. 5. Size of the FWs along with the size of the retrofitted binaries.

During the evaluations presented in this work, we did
not perform an exhaustive regression testing on the web
interface (nor on other functions and services) operating within
the evaluated devices and emulated firmware. Because such
exhaustive complete system regression testing would be a non-
trivial experiment in itself, we leave as future work the large-
scale evaluation of the functional impacts induced by retrofit
defense systems such as HALE-IoT . However, we performed
an evaluation of the retrofitted software. We apply fuzzing by
creating a harness for the core component of HALE-IoT (i.e.,
the function to which any data received through the socket is
passed) and use American Fuzzy Lop (AFL) as a fuzzing tool.
We see that the routines added as part of HALE-IoT are safe
and do not produce any crashes (100% success for all tests).
However, we found some memory-related bugs and several
crashes associated with an old and vulnerable version of the
WAF we used in our initial experiments. We report this finding
next to show the importance of performing black-box testing
using fuzzers, but we note that our final implementation of
HALE-IoT uses a WAF that was not vulnerable to this bug
and did not report any crashes at the time we tested it with
the fuzzer.

The crashes in the old version of the WAF occurred in waf-
mode four (one of the command line options). This parameter
has four levels of protection, number four being the highest,
and defines the mode of the DFA algorithm to detect common
attacks. With the rest of the modes, and with DFA disabled
using only regular expressions as rules, the application did not
produce any crashes with the same test cases. After further
inspection and debugging, crash occured when trying to read
a value beyond the stack limit, which causes a segfault. This
error is caused by the use-after-return memory error, and
since this memory area belongs to a function that has already
terminated, it can cause undesirable — yet not exploitable
— behavior. WAFs are both research-wide and industry-wide
accepted methods for securing web-apps (including legacy
web-apps) [39]. We discuss the bugs found, as well as the
security limitations that any retrofitted piece of software may
place on a system in Section VII-I.

A differentiating end goal of HALE-IoT with respect to
related work (e.g., ABSR and Symbiotes [57]) is that we aim
to be as unintrusive as possible, and to ensure that legitimate
requests do not have in important impact on the performance

of the device. Our results strongly support this goal.

We see that the use of HALE-IoT introduces some interesting
trade-offs. When attacks are blocked, we effectively reduce
the overhead. Judging by the performance of the hardened
device when processing legitimate requests alone, we see that
HALE-IoT does not introduce an important overhead.

VI. CASE STUDIES

We next present a number of case studies that aim at a better
understanding of the performance of HALE-IoT in detail. In
particular, we look at firmwares image from Linksys and Asus.
We conclude our case study with the deployment of a hardened
version of Asus RT-N12+ B1, RPi3 OpenWrt, Netgear R6220,
and Linksys EA4500 over four different hardware devices.
Table IV summarizes the technical specifications of the actual
physical devices used in our evaluation.

A. Reverse-Engineered Hardcoded Binary for Linksys
wrtsl54gs (emulation) (Q6)

As presented in Section V-C, there were 32 emulated
firmware that failed to isolate webserver via binding to
127.0.0.1. For unknown reasons, the firmware kept the web
service binding to 0.0.0.0. In order to demonstrate that HALE-
IoT is also feasible, practical, and effective even when the re-
configuration retrofitting fails, we attempted a minimal-effort
manual reverse-engineering of one such web-server binary.

For this, we chose the “httpd BusyBox” web server binary
from OpenWrt firmware built for wrtsl54gs device by Linksys.
Even though “httpd BusyBox” is known to support the “-
p” option to change the binding interface and port (e.g., “-p
127.0.0.1:81”), in this particular case it was not supported or
it did not work. We then investigated the potential reasons
behind this failure. The wrtsl54gs firmware image has a non-
stripped BusyBox binary that is dynamically linked, so our
first approach was to look for HTTP functions to recognize the
httpd BusyBox applet. Then, we identified the call to the bind
function and checked the parameters backwards. We found the
inet_aton function that converts a string IP address into
binary form and that uses the variable assigned from the “-l”
command-line argument as a parameter. Though this argument
does not appear in the help menu of the httpd command, it
allows the listening interface of that specific httpd binary to be
changed. We leverage the hidden “-l” option to successfully
run HALE-IoT in the wrtsl54gs firmware.

We can further generalize this one-time manual effort into
HALE-IoT’s automation as follows. We can identify similar
service-exposing binaries using, for example, Yara rules [58],
or heuristics and matching based on op-code level or semantic
code-similarity [59]. Similar binaries could relate to: i) the
same device (but different firmware version), ii) the similar
device models (from the same vendor), or even iii) distinct
devices across vendors (e.g., “white label” products). The
takeaway from this case study is that manual efforts can
sometimes provide “intelligence” that can help to scale the
hardening of images over a very large number of similar
firmware environments.
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TABLE IV
SUMMARY OF REAL DEVICES PERFORMING SUCCESSFULLY IN OUR

EVALUATION.

Device CPU / Cores / MHz Architecture RAM Storage
Asus RT-N12+ B1 MT7628NN / 1 / 580 MIPSel 32 MB 8 MB
Netgear R6220 MT7621ST / 1 / 880 MIPSel 128 MB 128 MB
Linksys EA4500 88F6282 / 1 / 1200 ARM 128 MB 128 MB
RaspberryPi 3 BCM2837B0 / 4 / 1400 ARM 1024 MB 4096 MB

B. Evaluation on RaspberryPi with OpenWrt (device) (Q7)

To evaluate HALE-IoT over a bare-metal device, we deploy
an OpenWrt (LEDE 2017 build) into a RaspberryPi 3 device.
OpenWrt is the most popular vendor in our dataset that has
firmware images for all our architectures. The LEDE 2017
build version of OpenWrt has a known XSS in its LuCI web
interface.6 Therefore, we first run a non-hardened OpenWrt
firmware and we see that the vulnerability can be exploited
in practice (see Figure 8 in Appendix A). We then harden the
same OpenWrt firmware with HALE-IoT and see that with
the “WAF + SSL-proxy” configuration we can completely
prevent the XSS attack, in addition to being able to add full
HTTPS support (see Figure 9 in Appendix A). This case study
indicates that HALE-IoT works as expected on bare-metal
devices. Our next case study explores this further.

C. Evaluation on Asus RT-N12+ B1 (device) (Q6, Q7)

We evaluate HALE-IoT on another bare-metal device we
had access to; Asus RT-N12+ B1. This device runs MIPS32
binaries, and in particular uses a custom httpd as its web
server. This image requires a retrofit at the binary level, as the
configuration parameters of the web server are hardcoded into
the binary and can not be identified by HALE-IoT automati-
cally. After reversing it, we see that the binary accepts three
arguments: 1) the name of the interface whose IP address will
be obtained through SIOCGIFADDR ioctl; 2) the port; and
3) a way to enable SSL connections. The device also runs
and exposes Telnet and SSH services that we used for “live
implanting” (§ VII-A).

As a result of our implant, we see how HALE-IoT spawns
the WAF into the device, and how the web service is se-
cured behind HTTPS while hardening all other services. We
see that Raptor works as expected, detecting and preventing
potentially malicious input test-vectors. However, we notice
that the device periodically faced some resource limitations
manifested as unavailability of RAM memory. Nondetermin-
istically, when insufficient RAM is available for handling
HTTPS/HTTP/network requests via the HALE-IoT processing
chain, the spawned process/thread (e.g., WAF, SSL-proxy) is
killed by the OS/Kernel due to lack of sufficient memory
blocks to allocate. This is a limitation rooted in a combination
of technical factors such as the hardware runtime environment
(i.e., device with very limited RAM), and the implementation
choices (i.e., SSL-proxy executable size). However, this case
study shows how our methodology can harden Asus RT-N12+
B1. In practice, for this type of device, a more lightweight
defensive mechanism would have to be deployed in order

6More details here: https://github.com/openwrt/luci/issues/1731.

to make the added defenses effective and usable. We further
discuss the implications that drive the choices of the implants
in Section VII-H. This case study shows that our generic
methodology lets us work with heterogeneous firmware im-
ages, and also on bare-metal devices and firmware.

D. Evaluation on Netgear R6220 (device) (Q6, Q7)

Next, we evaluate HALE-IoT on Netgear R6220. This
device runs MIPS32 little-endian binaries, and uses the
mini httpd web server. The web server does not contain
any configuration files, and the server options are configured
through the command line. Therefore, we can change the
listening port and interface via the server’s arguments. We
retrofitted Raptor and SSL-proxy on the device through a
Telnet server that can be enabled in debug mode. Raptor
worked as expected, but SSL-proxy did not work due to
Golang incompatibilities with older MIPS kernel versions7. As
an alternative to SSL-proxy, we use a statically-linked cross-
compiled lighttpd server with support for SSL/TLS and reverse
proxy. We use a configuration that listens on port 443 with
SSL enabled and redirects incoming requests to the WAF.
As a result of using lighttpd as an alternative, we can see
that the extra security layers added by HALE-IoT are working
correctly. This case study shows us that our methodology is
functional, flexible, and independent of the type of tools used.

E. Evaluation on Linksys EA4500 (device) (Q6, Q7)

Finally, we evaluate HALE-IoT on the Linksys EA4500
device. This device runs ARMv5 and lighttpd binaries as
a web server. The default firmware does not present any
access to the command line, which poses a challenge to
HALE-IoT . However, we found a workaround that shows how
our system can be deployed through unconventional means.
Linksys EA4500 allows a user to connect USB devices to
the router to share files over the network. When a USB is
plugged in, it is mounted in the /tmp folder of the device. If
a folder named packages exists, it is symlinked directly
to the /opt directory. Finally, whatever file is present in
/opt/etc/registration.d/, it will be executed by the
shell8. Therefore, we use this hack/vulnerability to add a
statically-linked version of dropbear and HALE-IoT into the
device’s running firmware. As a result of this implant, Raptor
WAF and SSL-proxy work properly together with access to
the device via SSH to update or modify its configuration.

VII. CHALLENGES AND DISCUSSIONS

A. Delivery of the Retrofitted Implants

Modifying an existing firmware is the first step in the
delivery of an implant, and it can be done by leveraging tools
like Firmware-Mod-Kit (FMK) [60]. However, in certain cases
implants are not easy to realize in practice. This happens, for
instance, when the firmware update needs a digital signature,
or there is a cryptographic protection (e.g., strong and secured

7https://github.com/golang/go/wiki/MinimumRequirements
8Dan Walters: https://web.archive.org/web/20120914060622/http://blog.d

anwalters.net/

https://github.com/openwrt/luci/issues/1731
https://github.com/golang/go/wiki/MinimumRequirements
https://web.archive.org/web/20120914060622/http://blog.danwalters.net/
https://web.archive.org/web/20120914060622/http://blog.danwalters.net/
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private key, correct implementation of validation). However,
there are also vulnerabilities that allow flashing a non-certified
or modified firmware into a device with these restrictions.
Some of these vulnerabilities relate to forging digital signa-
tures or bypassing digital signature verification. Giese [61]
exploits a Domain Name System (DNS) redirect to trick
Xiaomi Cloud to download modified firmware from a local
server. Another example is when there is no firmware update
available, except the original firmware running on the device.
Finally, low-level frameworks like Firmware-Mod-Kit may be
unable to support the specific firmware format that requires
hardening. We next discuss alternative methods that HALE-
IoT could deploy to circumvent this limitation. These methods
revolve around the idea of making the implant directly into the
device in runtime.

The first option is the use of network or serial interfaces
(e.g., Joint Test Action Group: JTAG, Universal Asynchronous
Receiver-Transmitter: UART) to access the built-in Telnet and
SSH services via the bootloader or the OS prompt. Then,
we can implant HALE-IoT using automation scripts over
traditional OS sysadmin techniques, as shown in the case study
in Section VI-C. The second option is to exploit a known
vulnerability in the running device, such as Remote Code
Execution (RCE) or Command Injection (CI), to inject benign
code and implant the HALE-IoT , for example, as demonstrated
for Linksys EA4500 (§ VI-E). Naturally, HALE-IoT can then
also patch those particular vulnerabilities so that they cannot
be further abused. Note that similar techniques have been used
by both highly-competitive malicious botnets and vigilante
IoT malware [62]. While this section discusses the challenges
of modifying firmware (software), we next look at the issues
behind dealing with the actual devices (hardware).

B. Persistence of the Retrofitting Implants

The IoT realm is heterogeneous, and the process of
retrofitting additional security into these devices is a highly
technical task. One task that remains particularly challenging
is keeping these retrofits persistent across reboots and power-
offs. HALE-IoT is stored at the filesystem level (e.g., flash
storage) to maintain persistence. However, several factors can
prevent HALE-IoT from being persistent, including factory
resets, firmware upgrades, forceful flash storage cleanup (e.g.,
SPI communication with flash chipset), or even protections
from manufacturers (e.g., restricting partitions to read-only).
In many cases, the implants (both benign and malicious) can
survive such “cleanup” scenarios by installing an implant com-
ponent at the bootloader level, thus essentially acting as a boot-
time rootkit. However, this is a challenging research area that
requires further explorations and ethical considerations. Other
specific protections from manufacturers can be overcome with
case-by-case-basis techniques, for example, the restriction of
partitions to read-only could be overcome by repacking or
reflashing the firmware (§ VII-A).

C. Dataset Size and Representativeness

In order to analyze, harden, and test our HALE-IoT system,
a firmware dataset is required. The vendor’s website is the

first choice for gathering firmware, but third-party websites
also host firmware images. The most convenient way to
acquire firmware online is via web-crawlers [1], [3]. However,
harvesting a dataset through web-crawling has its limitations.
For example, firmware that was once available online is
often pulled offline by the vendor. This can threaten the
reproduciblility of the evaluation. For example, state-of-the-
art projects, such as FIRMADYNE [3], face this problem and
we see a gap from the time of their release to the time of
our experiments, such that many URLs and firmware are not
available online anymore [1], thus limiting the experimental
datasets from the start. Even if the crawlers can be updated to
work with a redesigned website (which is tedious and does
not scale in effort), they cannot fundamentally be fixed to
download a firmware file taken offline by the vendor.

Also, some devices do not have firmware images available
online. This could be due to the nature of the product or the
age of the device. Pulling the firmware out of a device through
Telnet or Secure Shell (SSH) connections is possible in some
scenarios [63]. However, in many cases, memory dumps
through hardware hacking is the only viable option [41], [64].
IoT devices often accommodate low-level hardware interfaces,
such as UART or JTAG, through which it is possible to connect
directly to the device’s bootloader or to its root shell [41], and
then take a storage and memory snapshot, or just perform a
live-implant. This approach requires extensive human expertise
and interventions, and also does not scale well.

A fundamental challenge to all research targeting IoT
devices and firmware is the lack of a highly representative
baseline of IoT firmware dataset. Building a dataset is chal-
lenging and tricky from multiple perspectives. On the one
hand, collected firmware can face copyright scrutiny from
vendors if it includes proprietary firmware. Also, it is highly
unlikely that many relevant and omnipresent vendors will sign-
off releases of their firmware into such a dataset. On the other
hand, ignoring proprietary images and including only open-
source firmware would be easier to accomplish, but this would
bias the dataset and make it unrepresentative of the myriad of
COTS devices running proprietary firmware. Our evaluation
uses the FIRMADYNE dataset [3], which is considered state-of-
the-art. We were able to successfully process 395 images from
it, which is comparable in size to the datasets used in prior
works [2]. However, given the large number of IoT vendors,
this dataset can be seen as limited. Future work is needed to
create a dataset that is:
• a highly representative baseline of IoT firmwares (i.g.,

multi-dimensional representativeness: CPU architecture, OS,
device type, core services and functionality, networking
interfaces and stacks, and firmware packaging formats),

• not facing licensing issues (i.g., firmware that is proprietary,
non-distributable, etc.),

• stable and always available for download, duplication, and
improvement (i.g., never lost, either partially or totally).

D. Firmware Obfuscation

Firmware images are often packaged and compiled, thus,
requiring preparation before analysis [1]. Specialized software,
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such as Binwalk [47] and BinaryAnalysis-NG (BANG) [65],
is used to unpack the firmware, revealing the file system and
other information, thus enabling further analysis. However, as
there is no standardization, some manufacturers try to obfus-
cate and complicate unpacking and reversing their firmware,
for example, by adding custom format compression [1]. Due
to memory and other resource constraints, IoT devices often
ship with file systems designed for constrained devices, such
as Squash File System (SquashFS) or Journaling Flash File
System (JFFS, JFFS2) [66]. These file systems are often read-
only and have file system compression enabled. Additionally,
software such as Firmware-Mod-Kit (FMK) [60] is one of the
few available and one of the most popular tools to perform
firmware modifications on a relatively wide range of formats
and devices.

When not performing a live implant, HALE-IoT focuses on
retrofitting legacy binary firmware via firmware modifications.
Thus, it requires and performs: i) the unpacking, and modifi-
cation steps (if emulation is involved); ii) the unpacking, mod-
ification, and also repacking (if a physical device is required
to force a firmware upgrade for the implant to work). In these
cases (especially when a physical device with a firmware up-
grade is involved), in the end must produce a firmware that is
accepted by the device and is fully functional. However, even
though both firmware unpacking as well as modification-and-
repacking are represented by existing toolsets to some extent,
the current state-of-the-art does not addresses the fundamental
challenges of unpacking and modification-and-repacking of
non-trivially obfuscated or encrypted/signed firmware. In this
sense, the HALE-IoT system inherits all the limitation of the
existing tools (e.g., Binwalk, BANG, FMK), which however
is not a limitations of the HALE-IoT methodology itself. In
our current evaluation, the physical devices and the emulated
firmwares were representative of the IoT device populations
that allow relatively easy live-implanting as well as unpacking,
modification, and repacking. We posit that more work is
required to overcome the analysis of obfuscated or encrypted
firmware packages.

E. Runtime Environments Being Obsolete

Runtime challenges became obvious when we started ex-
perimenting with pushing implants into random COTS IoT
devices for the purpose of our case study. We next discuss
some of those challenges to illustrate the complexity of
the problem space and elicit research efforts towards better
instrumenting obsolete runtime environments.

In one instance, the router undergoing hardening had the
vendor’s original firmware, and was running BusyBox, Linux
kernel, and other executable files compiled for MIPS-I. How-
ever, the Buildroot environment we use (including many of
its prior versions), while producing MIPS32 builds, does not
produce MIPS-I cross-compilations anymore 9. For example,
even though we tried to run on the router our toolsets pre-
compiled by Buildroot for MIPS target, certain binaries re-
turned errors such as “Illegal instruction.” This is the most
tangible confirmation of a mismatch between the hardware

9https://github.com/buildroot/buildroot/blob/master/CHANGES

CPU Instruction Set Architecture (ISA) and the ISA generated
into the executable by the cross-compilation.

Addressing the “obsolete firmware environment” challenge
is important for several reasons. Any system, whether offen-
sive [57] or defensive such as HALE-IoT , will most likely face
either exactly the same or very similar challenge on a constant
and increasing basis. Some reasons for this are that devices
become obsolete/EOL faster, and the technology and software
development life-cycle is constantly accelerating. The above,
in turn, implies several more things. First, supporting many
legacy IoT devices will require an ever growing toolbox of
cross-compilation environments. Such a backward compatibil-
ity toolbox should provide as complete coverage as possible in
terms of combinations for CPU ISA, OS/kernel, Application
Binary Interface (ABI), and runtime environments (including
all different versions and inter-compatibility). Second, it will
require human expertise and manual intervention to generate
and maintain such cross-compilation environments, as well
as to ensure that the target-specific builds of systems such
as HALE-IoT actually work without errors (e.g., “Illegal
instruction”).

F. Runtime Services Hardcoded to 0.0.0.0 :< port >

Sometimes network services (e.g., web-servers) have the
port and the network interface binding hardcoded instead
of being read from a configuration file (whether standard
or proprietary). This is problematic, as it exposes the origi-
nal built-in network server to potential attacks coming from
attacker-accessible interfaces. In fact, for the 32 firmware in
our dataset that expose web services, the interface and/or port
was hardcoded directly into the binary. With HALE-IoT (cf.
Figure 1) the aim is ideally to isolate (inherently) vulnerable
services to 127.0.0.1 :< port >, and to expose only the
hardened services via HALE-IoT .

One possible workaround to this challenge is to manually
reverse-engineer and binary-patch the executable files of in-
terest and, ideally, force them to bind to 127.0.0.1 :< port >.
While this approach will most likely work in most cases, it still
cannot scale similarly to the automated configuration change
approach we presented above. Another possible workaround is
to force-start a dummy TCP/UDP server on 0.0.0.0 :< port >
before the built-in network service (e.g., web-server on port
80) has a chance to bind to it, and then observe how the
original service behaves for re-binding (e.g., moves to another
port, moves to another interface, fails to start altogether).
Implementing and testing these adjustments is the scope of
our future work.

G. From Self-Signed HTTPS Certificates to Full CA Chains

One of the core aims of HALE-IoT is to generically harden
IoT devices with proper HTTPS, including support for full-
chain certificates. For this, the HALE-IoT approach uses the
concept of HTTPS-proxying that creates a proper HTTPS
service point that is relayed to the built-in webserver. Our
current implementation choice is to use SSL-proxy, which
provides the latest and most secure TLS implementations,
and supports full chain certificates. However, in order to

https://github.com/buildroot/buildroot/blob/master/CHANGES
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simplify our experiments, and for several practical reasons,
we used self-signed certificates generated by the SSL-proxy
itself. Should we deploy and evaluate HALE-IoT on real-world
internet-facing IoT devices in the future, the following minimal
steps would ensure an example implementation when using
proper PKI full certificate chains:

1) Configure and connect the device to a public DNS sub-
domain name under the user’s control (e.g., using DDNS
services or otherwise), for example https://device-X.fleet
-Y.service-provider.c0m.10

2) Have a full certificate chain issued by a trusted CA (e.g.,
Let’s Encrypt) and covering https://*.fleet-Y.service
-provider.c0m or https://device-X.fleet-Y.service-p
rovider.c0m (depending on the desired granularity of
“device identity management” versus “PKI/certificate/key
control”).

3) Use the corresponding full certificate chain and its private
key(s) to configure the SSL-proxy implant that goes into
a corresponding device. This can be done before implant-
ing HALE-IoT , or while the hardened device is already
running by using HALE-IoT’s SSH-based administrative
interface.

The above is an example of the improvements needed to ensure
secure management of DNS, PKI, certificates, private-keys,
and device identities.

Moreover, effective and efficient PKI implementations rep-
resent an ongoing area of research on its own [67], [68], espe-
cially when considering deployment of PKI for IoT [69], [70].
Therefore, we leave research, experimentation, and validation
of full-blown PKI support for HALE-IoT as future work.

H. Resource Constraints: Static Linking vs. Dynamic Loading

We present two approaches to deal with constraint in
physical devices. On the one hand, static linking allows the
toolsets within HALE-IoT to be self-contained, and not de-
pending on the existence of particular libraries within the target
retrofitted firmwares. This makes the approach highly-scalable:
cross-compile once, run everywhere. However, this approach
considerably increases the size of the binaries included with
the implant. This is problematic from a storage perspective and
from a memory perspective, as there is essentially a possible
duplication of library code loaded into RAM due to static
linking. Flash storage and RAM memory are quite constrained
and minimal in many devices. For instance, Asus RT-N12+
features a 32MB RAM chipset, where 28MB is allocated
for userland applications, from which less than 2.5MB was
available for the entire HALE-IoT.

On the other hand, dynamic loading allows the toolsets to
be built with minimal binary size and runtime RAM memory
consumption, as there is no code duplication and the hardening
toolsets can rely on the libraries already present on the device’s
storage and RAM. However, this approach is highly non-
scalable. For example, it means that the toolsets would have to
be linked with dynamic loading to a myriad of library versions
present in each different firmware version. Even if that could

10A full first-level DNS domain name would also work for a single device,
but is sub-optimal and hardly practical for managing larger fleets of devices.

be automated somehow, it does not guarantee that the library
exposes the correct and expected interface and functions (e.g.,
if the library is vendor-customized or missing headers).

This challenge is not easy to solve systematically. Our
experience suggests that the best approach is to write highly-
optimized toolsets designed to fit highly-constrained devices.
If this is not feasible, then the newly developed hardening
toolsets, especially those that are tailored specifically for IoT
devices, should incorporate these design principles.

I. Inherent Limitations of WAFs and xAFs

Like any piece of software, WAFs and xAFs or, in general,
any implant that can be retrofitted into a system may be subject
to limitations that can range from it’s own implementation
errors (e.g., WordPress WAF plugin recently vulnerable to
SQLi itself 11), or new vulnerabilities and zero-days to out-
dated software configurations that may arise in the future. Such
fundamental limitations would also be inherited by HALE-IoT .

One limitation is that most WAFs can detect and prevent
input-driven exploits, but very often they are unable to detect
and prevent other attacks such as “stored XSS.” Another
limitation is that WAFs are mostly rule-based, so the presence
or absence of specific rules may determine the success or
failure of detection/prevention. Also, keeping such rules up to
date is another factor that may affect or limit the effectiveness
of any given WAF. We have designed HALE-IoT with an
administrative interface in mind. This feature, if used often
and correctly, may help overcome the limitations of outdated
rulesets and components. Though technically possible, we
leave full automation of updating HALE-IoT rule-sets (and
other components) as future work.

As a result of our work, we have fixed several bugs in
Raptor that have improved the overall reliability of the WAF.
The discovery of the bugs and the development of their
patches are a relatively modest contribution in itself. However,
their discovery underpins the importance and the need for
experiments such as ours to expose well-known and widely-
used software to even more scenarios.
Bugs in Raptor WAF – HTTPS. During the course of the
experiments, we detected certain bugs in the way the WAF
should work. First, the communication lasted longer than ex-
pected even when all the responses had been received, causing,
for example, the browser to appear to still be loading the web
page. Inspection of the source code revealed that the socket
descriptor was not closing, which caused the connection to
remain established. Second, we encountered strange behavior
when the WAF was running alongside the SSL-proxy. In this
case, when we made POST-type HTTP requests that included
some payload, Raptor did not detect them correctly. When
instead only the WAF was running instead, it worked as
expected with the same request. After closer inspection, we
found that the WAF checks whether a request is a web HTTP
request, and if so then the Raptor analyzes it. Generally, most
web clients (e.g., curl or web browsers) send the headers and
the data in the same packet (large chunks of data will be

11https://portswigger.net/daily-swig/wordpress-security-plugin-hide-my-w
p-addresses-sql-injection-deactivation-flaws

https://device-X.fleet-Y.service-provider.c0m
https://device-X.fleet-Y.service-provider.c0m
https://*.fleet-Y.service-provider.c0m
https://*.fleet-Y.service-provider.c0m
https://device-X.fleet-Y.service-provider.c0m
https://device-X.fleet-Y.service-provider.c0m
https://portswigger.net/daily-swig/wordpress-security-plugin-hide-my-wp-addresses-sql-injection-deactivation-flaws
https://portswigger.net/daily-swig/wordpress-security-plugin-hide-my-wp-addresses-sql-injection-deactivation-flaws
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divided into multiple different TCP packets). However, the
HTTP libraries of the Go programming language split the
request: first send the headers, and then the data itself. Hence,
Raptor WAF fails to analyze the data from the subsequent
GET/POST request(s). We patched Raptor’s code to check the
data size of the headers, and then to reassemble the packets
before analyzing and proxying the traffic to the destination
(i.e., firmware native) web server.
Bugs in Raptor WAF – Memory Leaks. We found several
memory-related problems in Raptor WAF. First, we encoun-
tered a use-after-return error [71]. This error occurs
when a function returns the memory address of a local
variable, which is “destroyed” when the function terminates.
Therefore, the returned pointer references to an area of the
stack that could be used for another function, and could cause
unwanted behavior or exploitation of the program [72]. Finally,
we found several cases where dynamically allocated memory
areas are not properly released, which caused memory leaks.
Not freeing up memory causes the program to eventually
store more memory than it needs, which is a major issue
with memory-constrained devices (see also Section VII-H).
This can be an overall limiting factor to the usability of the
retrofitting implants, and can also lead to general instability
and crashes systems on which Raptor WAF is installed,
meaning it can very well affect high-end servers and not
just constrained IoT devices. Lastly, there is inherent risk in
the uninitialized memory created by the dynamic allocation
algorithm. This is not a security bug per-se (rather a feature
of many programming languages), but certain functions such
as malloc return a pointer to a block of memory that has
uninitialized values and can be potentially exploited [73], [74].
However, the shortcoming of having uninitialized memory ar-
eas can be effectively remedied by making use of the calloc
function, which fills the dynamically allocated memory block
with zeros as a deterministic initial value, at the expense of
minor performance overheads.

VIII. RELATED WORK

Hardening legacy IoT devices has been a subject of several
research papers over the years [14], [20], [22], [76], [79],
[104], [105]. At the same time, hardening systems and applica-
tions (which also could be extended to IoT at least) have seen
a massive body of work on two separate directions, namely
WAF [39], [89]–[94] and IDS [82]–[88]. Related works, which
we showcase here, follow different strategies and we group
them into the following categories:

1) embedding defensive software or retrofitting security
measures

2) securing firmware from malicious modifications
3) securing access control and communications
4) web and application firewalls
5) intrusion detection systems

Table V summarizes the massive body of related works.

A. Retrofitting, Patching, and Hardening for Security

Enhancing the security of a single IoT device is a defensive
strategy that works best when the devices are not part of a

large centralized network of IoT devices. Cui and Stolfo [20]
introduce the notion of Symbiotic Embedded Machine (SEM),
a software design to embed defensive software into an existing
installation. The authors embedded an intrusion detection sys-
tem and showed how these strategies can lead to the detection
of stealthy malware (i.e., a rootkit) into a Cisco router. Choi
et al. [14] followed a similar approach in their research. They
developed a scheme to deploy security features in poorly-
secured IoT devices through the deployment of a monitoring
Web service that manages multiple IoT devices in a network.
Recently, Maroof et al. [75] presented iRECOVer, a holistic
solution for the security management of IoT devices. It aims
to replace “vulnerable modules” with “secure modules” and
offers “secure channels” for communicating devices, without
specifically addressing backward compatibility and intended
equivalent functionality of secured modules. The authors
demonstrated iRECOVer on a single Raspberry-Pi 4 Model
B device running customized open-source Linux distribution.
The authors were unable to demonstrate iRECOVer on real-
world IoT devices, as they acknowledge that “programming a
commodity IoT device is difficult.” HALE-IoT is fundamentally
different, as it is demonstrated to work on a large number of
heterogeneous and original-commodity IoT devices/firmware,
and does not replace original modules, but rather wraps them
in added-security layers. These works showed that retrofitting
security measures is a process agnostic to the platform (hard-
ware and software), and it does not need to be attuned to any
executable format. Similarly to approaches based on SEM,
HALE-IoT is installed alongside the original operating system
and injects protecting payloads into the target. However, prior
works propose hardening solutions that are tailored to specific
attacks and are limited by scale and lack of automation. HALE-
IoT is designed as a generic method to deploy universal and
hardening solutions with proven effectiveness, while at the
same time minimizing intrusion and reconfigurations to the
original firmware.

Not every hardening tool is universal, as some are designed
to secure a more specific section of IoT devices. For ex-
ample, Christensen et al. [76] introduced DECAF, a Unified
Extensible Firmware Interface (UEFI) firmware code pruning
system to reduce redundant and possibly vulnerable code in
firmware while increasing system performance and security.
This firmware commonly exists in motherboards. The DECAF
platform does this “debloating” by performing “dynamic itera-
tive surgery” and utilizing existing knowledge of the firmware
to remove known possible issues. The authors conclude that in
some cases, DECAF reduces the UEFI firmware code by over
70%, thus, notably reducing the attack surface of the firmware.
The authors claim that DECAF could potentially be extended
to prune any type of firmware. Similarly, Cui et al. [57]
propose ABSR as an early conceptual ideal firmware code-
debloating technique achieved via binary-patching and binary-
rewriting. Recently, Zhang et al. [77] presented µTrimmer,
a system to identify and remove unused basic blocks from
binary code of shared libraries and tools. The authors imple-
mented µTrimmer for the MIPS architecture (a very common
one for IoT devices), and tested its effectiveness on SPEC
CPU2017 benchmarks, popular firmware applications (e.g.,
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TABLE V
SUMMARY RELATED WORK

Category Reference Highlight
[20] Introduces the concept of SEM to inject IDS into the embedded device.

Retrofitting, Patching,
and Hardening for

Security

[14] Proposes a scheme to minimize vulnerabilities and threats, improving the security of IoT devices.

[75] Proposes the use of a service-based architecture in order to be able to monitor and replace vulnerable
modules on the fly.

[76] Introduces DECAF, a system to remove redundant code from UEFI firmware and thus decrease the possibility
of vulnerable code.

[57] Proposes ABSR, a technique to disable unused firmware features and remove unused binary files.
[77] Introduces a system to identify and remove unused basic blocks from the binary code of shared libraries.
[78] Designs WebDroid, a framework for building secure embedded web interfaces.

(Malicious) Firmware
Modifications

[79] Analyzes the security impact of untrusted hard drives. The authors analyze the firmware of a hard drive
and infect it with a backdoor.

[57] Demonstrates that firmware updating is a feature that can be exploited to inject firmware modifications.

[80] Analyzes the exposure of PLCs to firmware modifications and the feasibility of this attack through a proof
of concept.

[81] Analyzes the impact of firmware modification in smart grid environments

Intrusion Detection
Systems

[82] Conducts a survey of IDS focused on IoT environments, as well as the different ML and DL techniques
used for attack detection.

[83] Proposes an intelligent architecture for IoT based on Complex Event Processing (CEP) and ML to detect
IoT attacks in real time.

[84] Introduces Passban, an ML-based IDS architecture to detect anomalies in IoT network traffic.

[85] Presents a framework that combines ML with software defined networking and network function virtual-
ization technology for the detection of IoT attacks.

[86] Proposes an IDS for anomaly detection based on a Multimodal Deep Auto Encoders and a classification of
detected attacks based on ML algorithms.

[87] Presents Kitsune, an IDS based on autoencoders to detect network attacks that allows learning in an
unsupervised way.

[88] Proposes an IDS based on deep learning techniques to detect DoS attacks, port scanning or brute force in
IoT environments.

Application Firewalls
and WAFs

[39] Conducts a survey with the different existing approaches to secure web applications.
[89] Compares the different existing WAF solutions in the literature.
[90] Measures the effectiveness of WAFs to prevent injection attacks in web applications.
[91] Analyzes the performance of the most used open source WAFs.

[92] Proposes WAFFle, a tool to fingerprint the rules of a WAF and craft attacks using some loophole in the
filtering rules.

[93] Presents an approach based on machine learning algorithms to detect loopholes in the WAF and generate
attacks that bypass it.

[94] Introduces a prototype that combines static and dynamic verification so that WAFs can formally guarantee
the absence of certain types of bugs.

Authentication and
Encryption of IoT
Communications

[7] Conducts a large-scale analysis of TLS and SSH servers presenting evidence of the vulnerability of many
of their keys.

[28] Analyzes TLS deployments in IoT environments, comparing certificates and connection parameters.
[29] Presents a study to evaluate TLS vulnerabilities in devices, comparing their results with those found in [28]

[95] Conducts a study of the size of the RSA keys used in the most popular protocols, finding that many of
them use 512-bit RSA keys.

[96] Analyzes TLS network traffic of IoT devices uncovering weaknesses in the way TLS is deployed (e.g.,
insecure versions, lack of certificate validation).

[27] Performs a large-scale measurement of existing certificates in the IPv4 address space, noting that nearly
88% of certificates are invalid.

[97] Analyzes the response time, overload, and network latency of the TLS and DTLS protocols in IoT
middleware systems used in the e-health ecosystem.

[98] Conducts a usability study of the TLS deployment process for HTTPS.
[99] Performs a study on the two web security features HSTS and public-key pinning.

Over-The-Air (OTA)
Firmware and

Software Updates

[100] Conducts a survey of existing works in the literature related to secure firmware upgrade.
[101] Summarizes the key principles of OTA updates for IoT devices.
[102] Proposes a security architecture to facilitate the updating of software and hardware in vehicles.

[103] Proposes the use of assurance case templates that comply with ISO 26262 and SAE J3061 to guarantee the
security of OTA updates.

[10] Conducts a survey on OTA updates in vehicles connected to the network.
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OpenSSL), and a single real-world wireless router firmware
image. µTrimmer demonstrated that the challenge of static
library debloating on stripped binaries, while being enormous,
is not insurmountable for MIPS-based firmware; their system
produced functional programs while reducing unnecessary
exposed code surface and eliminating various reusable code
gadgets. However, debloating itself is ineffective at hardening
core services in the firmware (e.g., fragments of the firmware
that cannot, or should not, be pruned). Additionally, debloating
in principle is a high-risk technique, as it may prune code seg-
ments that are instrumental for the normal intended operation
of the system/device as a whole. Our system avoids debloating
altogether and hardens the potentially vulnerable services with
securing wrappers that bring proven effectiveness (e.g., Raptor
WAF) and security guarantees (e.g., SSL-proxy).

Standalone IoT devices often interface with the user via
built-in web servers due to its wide and cost-effective adoption.
However, web services often introduce vulnerabilities to the
system. Gourdin et al. [78] tackled this issue by developing
WebDroid, an IoT focused Android OS web interface de-
velopment framework with security as a priority. WebDroid
enables developers to easily create more-secure web inter-
faces for their Android-based IoT devices. The framework
takes into account many important security issues such as
bad authentication practices, Cross-Site Scripting (XSS), and
Cross-Site Request Forgery (CSRF). These frameworks are
an interesting first step towards securing devices for vendors
that lack the means to produce secure environments [106].
However, these types of frameworks are meant to be integrated
into the source-code and development life-cycle, and can not
be easily adopted to secure firmware already deployed. Our
work, on the other hand, practically demonstrates a systematic
approach to integrating defensive measures post-deployment
and without access to the source-code.

B. Malicious Firmware Modifications

Other related works perform firmware modification to attack
devices [79], such as malware targeting Universal Serial Bus
(USB) devices [107] or printers [57], as well as attacks to
critical infrastructures [80] (including smart grids [81]). These
works are certainly a strong testament that firmware mod-
ifications have important real-world implications. However,
modifying the firmware to embed defensive and protective
mechanisms (as we do with HALE-IoT) requires an entire
methodological consideration and evaluation to both preserve
the correct functioning of the device (§ V-E) and assess the
real effectiveness of the multi-dimensional defenses (§ V-D).

C. Intrusion Detection Systems

Intrusion Detection System (IDS) have been a subject of
research over the last few years. Thakkar et al. [82] conducted
a survey on IDS in IoT environments distinguishing between
strategies for placing an IDS and for analysis. The most recent
related work focuses on building IDSs based on Machine
Learning (ML) [83]–[85] and Deep Learning (DL) [86]–[88]
models. However, most of them do not take the limitations
of legacy IoT devices into account in terms of storage and

computing capacity to run the trained models, using at best
the Raspberry Pi to evaluate the model in IoT. HALE-IoT is a
methodology to retrofit security measures in IoT devices, and
it is not limited to any tool, allowing the implementation of
ML or DL algorithms instead of the WAF used. However, for
the implementation of such measures, it is necessary that they
adhere to certain assumptions regarding the footprint of the
application, dependencies and architecture of the device.

D. Application Firewalls and WAFs

The security of server-side applications and the main vulner-
abilities that affect this type of application has been a subject
of research in recent decades [39]. With the growth of the
Internet and the services offered through the network, web ap-
plications have become one of the main services attacked. One
of the main protections for this type of attack is WAFs, which
have been the subject of research in the last decade [89]–[91]
and are widely used in the industry. WAFs are responsible for
monitoring HTTP traffic between users and web applications,
being able to effectively identify known attacks. However,
because they are not able to identify zero-day attacks, their
signatures need to be updated periodically [39]. Although,
there are ways to overcome WAFs (e.g., loopholes in the WAF
rules [92], [93]), WAFs can also, in some cases, formally
show/guarantee absence of certain bugs. Thus, we assume
adding WAF as part of HALE-IoT methodology is sound,
sane, and increases cybersecurity [94] by protecting device
web interfaces from known attacks that are being exploited
automatically on a large scale.

E. Authentication and Encryption of IoT Communications

Perhaps weak authentication, lack of encryption, and vul-
nerable web services are altogether one of the largest attack
surfaces in IoT devices to date [7], [27]–[29], [95]–[97]. There
is a significant number of previous works that:

1) measures and points out crypto-security deficiencies in
the IoT realm as a whole [7],

2) identify the use of weak cryptography in constrained
devices [28], [29], or

3) discover weaknesses in the way TLS or PKI is deployed
over the IoT [27], [96].

However, none of the existing works in the literature manage
to effectively harden these services due to its intrinsic com-
plexity: “the HTTPS deployment process is far too complex
even for people with proficient knowledge in the field” [98], not
to mention when such deployment is rooted into an obscure
component such as the firmware of a legacy IoT device. It
is also well known that the web is “large and complicated
enough to make even conceptually simple security upgrades
challenging to deploy in practice” [99]. The web of IoTs of
all networks is perhaps one of the hardest to harden. Still, our
work presents a practical, sound, and actionable contribution
to addressing these non-trivial challenges.

F. Over-The-Air (OTA) Firmware and Software Updates
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Kolehmainen [100] performed a survey of secure firmware
updates for IoT. The author concluded that there are almost
as many firmware and software update procedures as there
are manufacturers, and proposed a common four-element up-
date model: packing, delivery, authentication, and attestation.
Bauwens et al. [101] summarized and outlined key OTA
principles for IoT devices and deployments.

Regarding (secure) OTA and Firmware OTA (FOTA) imple-
mentations, the automotive industry is perhaps the forerunner
and trend-setter in the research literature. Idrees et al. [102]
showcased a model for manufacturers, workshops, and ve-
hicles to establish a secure end-to-end link using a trusted
platform model and secure communication. The model can
be used to secure FOTA updates. Chowdhury et al. [103]
proposed an ISO 26262 and SAE J3061 utilizing an assurance
case template for OTA updates. If used properly, the template
is a valuable tool for manufacturers to root out security issues
in their automotive OTA implementation in the development
phase.

In 2020, Halder et al. [10] concucted a survey in regard to
OTA updates of network-connected vehicles. They identified
some challenges that the industry has yet to fully solve. For
example, the software distribution needs to protect privacy as
well as be secure. Latency of the software installation can also
be an issue, especially for autonomous vehicles. Furthermore,
since key management is generally based on the trust of pre-
installed keys, key refresh may be in order considering the
lifetime of a car.

However, our present work has a different and comple-
mentary focus, in that HALE-IoT does not propose to solve
any challenges faced by (secure) OTA/FOTA software updates.
In fact, HALE-IoT itself could be delivered/deployed by any
OTA/FOTA system that is running (or supported) by the
particular device(s). We leave the exploration of integrating
HALE-IoT into OTA/FOTA workflows as promising future
work.

IX. CONCLUSION

The Internet and private networks are littered with millions
of vulnerable IoT devices. A large number of these devices
are effectively abandoned by manufacturers, who do not issue
patches to fix known issues. This prevents users and network
administrators from keeping their devices up to date, and thus
poses an endemic risk to the security of the Internet, as well
as of the enterprise and private/home networks. Hardening IoT
devices allows the attack surface to be reduced, which emerges
as a promising countermeasure. However, prior work has
limited scope, and clearly fails to deal with the heterogeneity
and the many technological constraints of both modern and
legacy IoT devices.

In this paper, we presented a systematic methodology de-
signed to retrofit sophisticated state-of-the-art defensive mech-
anisms into IoT firmware, with particular focus on legacy and
obsolete firmware. We tested our framework with a wide-
range of firmware images from different vendors and het-
erogeneous architectures, totaling 395 emulated firmware and
four physical devices. Our results demonstrated that HALE-
IoT successfully retrofits defensive implants in a scalable and

safe manner (i.e., without breaking the firmware). We also
evaluated the performance of our approach under a battery of
one hundred attacks, showing it is feasible to deploy HALE-
IoT in the wild.

We discussed our findings and identified a number of lim-
itations that showed the challenges and the idiosyncrasies of
hardening IoT devices. Our discussion also elicited a number
of future promising directions. First, an interesting avenue of
research is to explore the use of defense-in-depth strategies
as a mechanism to harden IoT devices. This introduces non-
negligible trade-offs between the complexity of the method
(e.g., iptables, Snort, fail2ban) and the overall gain. Second,
we identify the need to automate the cross-compilation of the
implants to more CPU architectures (e.g., RISC-V, Xtensa)
and to a more diverse set of obsolete environments (e.g.,
MIPS-I), while minimizing the overall footprints at build and
runtime (e.g., storage, RAM, CPU). Finally, we would like to
encourage researcher and industry practitioners having access
to large sets of physical devices to enlarge evaluation and
support in HALE-IoT .
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APPENDIX

A. Supporting Materials – Screenshots

1) Screenshots for Evaluation on IPTV camera (emulation):
Figure 6 shows the TRENDnet TV-IP121WN IP camera web
interface running with HALE-IoT via firmware emulation.

2) Screenshots for Evaluation on CVE-2016-1555 (emula-
tion): Figure 7 shows the successful detection of the attempted
exploitation of CVE-2016-1555 (XSS and Command Injec-
tion) on an emulated firmware that is hardened by HALE-IoT .

3) Screenshots for Evaluation on RPi3 with OpenWrt (de-
vice): Figure 8 and Figure 9 show how HALE-IoT works on a
RaspberryPi 3 running OpenWrt (§ VI-B). Figure 8 shows the
successful exploitation of an XSS in the LuCI web interface
without HALE-IoT , while Figure 9 shows that the attack is
detected and prevented when the device is hardened by HALE-
IoT .

4) Screenshots for Evaluation on several devices (device):
Figure 10, 12 and 11 show the successful installation of HALE-
IoT on the physical devices Asus RT-N12+ B1 (§ VI-C),
Netgear R6220 (§ VI-D), and Linksys EA4500 (§ VI-E),
respectively.

https://us-cert.cisa.gov/ncas/tips/ST08-001
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Fig. 6. Screenshot depicting emulated TRENDnet TV-IP121WN IPcam’s
web-interface along with the generated HTTPS certificate as part of the
SSL/TLS hardening by HALE-IoT (emulation).

Fig. 7. Evaluation on CVE-2016-1555 (emulation): Screenshot depicting
successful detection and prevention of both XSS and Command Injection
attacks attempting to exploit CVE-2016-1555 on an emulated firmware
hardened with HALE-IoT .

5) Screenshots for Evaluation on Linksys wrtsl54gs Hard-
coded Binary (emulation): Figure 13 shows the Ghidra de-
compiled code of the BusyBox httpd applet showing that it
accepts an option to change the IP address to bind the web
server. On the other hand, Figure 14 shows that this option
is not available in the help menu of the httpd applet. Finally,
Figure 15 shows that by using this hidden “-l” option it is
possible to isolate from 0.0.0.0 the (potentially vulnerable)
web server when it is working with HALE-IoT (§ VI-A).

Fig. 8. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
XSS in OpenWrt’s LuCI web interface running on RPi3 without HALE-IoT .

Fig. 9. Evaluation on RPi3 with OpenWrt (device): Screenshot depicting
successful prevention of XSS and addition of HTTPS after RPi3 running the
same originally vulnerable OpenWrt was hardened with HALE-IoT .

Fig. 10. Evaluation on Asus RT-N12+ (device): Screenshot depicting HALE-
IoT implant successfully running on Asus RT-N12+ B1 device.

Fig. 11. Screenshot depicting Netgear R6220’s web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .



24

Fig. 12. Screenshot depicting Linksys EA4500’s web-interface along with the
generated HTTPS certificate as part of the SSL/TLS hardening by HALE-IoT .

Fig. 13. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting the presence of a hidden “-l” option used for binding network
interface.

Fig. 14. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting that the builtin httpd server’s help menu does not normally show
the hidden “-l” option.

Fig. 15. Linksys wrtsl54gs Hardcoded Binary (emulation): Screenshot
depicting that builtin httpd server did a successful re-bind to 127.0.0.1 by
forcing this via the hidden “-l” option.
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Javier Carrillo-Mondéjar received the B.Sc. and
M.Sc. degrees in Computer Science and Engineering
and the Ph.D. degree in Advanced Computing Tech-
nologies from the University of Castilla-La Mancha,
Spain, in 2016, 2017, and 2022, respectively. In
2016, he joined the High-Performance Networks
and Architectures (RAAP) group of the Informatics
Research Institute of Albacete (I3A) as a Research
Assistant. His research interests are related to mal-
ware detection and classification techniques, with a
particular focus on IoT/firmware cybersecurity. He

has also been a visiting researcher at King’s College London for 5 months
and the University of Jyväskylä for 3 months.
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