
Stories from a Customized Honeypot for the IoT

J. Carrillo-Mondejar1, J. Roldán-Gómez2, J.M. Castelo Gómez3, Sergio Ruiz Villafranca3, G. Suarez-Tangil4
1Departament of Computer Science and Systems Engineering, University of Zaragoza, Spain

2Department of Computer Science, University of Oviedo, Spain
3Albacete Research Institute of Informatics, University of Castilla-La Mancha, Spain

4IMDEA Networks Institute, Spain

jcarrillo@unizar.es, roldangjose@uniovi.es, {juanmanuel.castelo, sergio.rvillafranca}@uclm,

guillermo.suarez-tangil@imdea.org

Abstract
Since the inception of the Internet of Things (IoT), the

security measures implemented on its devices have been

too weak to ensure the appropriate protection of the data

that they handle. Appealed by this, cybercriminals

continuously seek out for vulnerable units to control,

leading to attacks spreading through networks and

infecting a high number of devices. On top of that, while

the IoT has evolved to provide a higher degree of security,

the techniques used by attackers have done so as well,

which has led to the need of continuously studying the

way in which these attacks are performed to gather

significant knowledge for the development of the

pertinent security measures.

In view of this, we analyze the state of IoT attacks by

developing a high-interaction honeypot for SSH and

Telnet services that simulates a custom device with the

ARM architecture. This study is carried out in two steps.

Firstly, we analyze and classify the interaction between

the attacker and the devices by clustering the commands

that they sent in the compromised Telnet and SSH

sessions. Secondly, we study the malware samples that are

downloaded and executed in each session and classify

them based on the sequence of system calls that they

execute at runtime. In addition, apart from studying the

active data generated by the attacker, we extract the

information that is left behind after a connection with the

honeypot by inspecting the metadata associated with it. In

total, more than 1,578 malicious samples were collected

after 9,926 unique IP addresses interacted with the system,

with the most downloaded malware family being Hajime,

with 70.5% of samples belonging to it, and also detecting

others such as Mirai, Gafgyt, Dofloo and Xorddos.

Keywords: Honeypot, Malware, IoT, Data analytics,

Expert systems

1 Introduction

Nowadays, there are innumerable devices connected

to the Internet which interact with each other, providing

services to users that, until a few years ago, seemed

unthinkable. The result of integrating technology in new

environments different from conventional ones, namely

the cloud, desktop or mobile, is what is we know as the

Internet of Things (IoT). IoT devices make people's lives

easier by easing tasks that users perform on a daily basis.

Using a mobile device for controlling household

appliances or utilizing your own voice for turning on the

light or the television are some examples.

This means that the IoT is heavily involved in the

activities that a person carries out in many aspects of their

life. As a consequence, due to the high number of

interactions that are made between user and device, both

actively and passively, the resulting volume of data that is

managed in this environment is immense. In addition,

since some of this data can have a high degree of

sensitivity, cybercriminals find it very appealing to attack

IoT units. Unfortunately, although these devices provide a

great number of features that are attractive to users, the

security measures implemented on them are not strong

enough to stop these attacks, thus making them vulnerable

due to such simple aspects such as using default and easily
guessable user and password combinations, having weak

default settings or running well-known-to-be outdated and

vulnerable software.

The characteristics mentioned above, together with the

lack of knowledge that many users have regarding the use

of new technologies, have led cybercriminals to focus

many of their efforts on attacking IoT devices and

obtaining financial returns from them. According to a

recent report [1], the number of attacks on these devices

reached one hundred million in 2019, exceeding the

number of attacks in 2018 by seven times.

Under these circumstances, it is important to

understand what activities attackers perform in order to

compromise IoT devices and what actions they carry out

once they have gained access to a system. To study this,

the use of honeypots, which are devices which simulate

systems that present some kind of vulnerability, is a very

effective approach to attract attackers, and a technique that

has been successfully used in other experiments such as

[2]. This allows for different types of attacks to be

captured and, upon analysis, the extraction of knowledge

regarding the multiple techniques and tools used by

attackers for carrying out their criminal schemes.

In this work, we have deployed a high interaction

honeypot [3] that simulates a device with the Advanced

Reduced Instruction Set Computer Machine (ARM)

architecture. After performing an analysis of the

interaction between this infrastructure and the attackers,

the main contributions that can be extracted from this work

are the following:

• We present a statistical analysis of the

connections that took place in our honeypot,

showing the geographical information about

the origin of the attacks as well as the most

commonly usernames and passwords used in

brute force attacks, and the different remote

hosts to which the attackers tried to connect

once they had obtained valid credentials.

• We perform an evaluation of the interaction

of the attackers with our system, classifying

the sessions established according to the

sequence of commands introduced by the

attackers.

• We present an analysis of the files

downloaded by the attackers in our

infrastructure, mainly consisting of binary

files, but also bash-scripts and compressed

files.

• We evaluate the similarity between each pair

of collected files and classify them using N-

grams together with the Jaccard index.

The remainder of this paper is organized as follows.

Section 2 studies the proposals form the scientific

community. Section 3 describes the methodology

followed, and Section 4 presents the data analysis for the

experiment that was carried out. Finally, Section 5

presents the main conclusions.

2 Related work

The concept of a honeypot was first introduced more

than two decades ago when the first worms started to

spread through Windows and Linux systems [2].
Honeypots are monitored systems which are exposed to

the Internet with the aim of obtaining information about

attacks that are occurring in real time. These systems can

be classified as low, medium and high interaction

depending on the functionality that is available for

attackers [3]. Low and medium interaction systems do not

present a complete system to the attacker (i.e., lack of

commands, static file system or fixed command outputs

[4]), while high interaction systems do provide a complete

system to attackers and, therefore, it makes it difficult to

fingerprint the honeypot based on its interaction or the

tools that are available [5].

Nowadays, one of the main attack trends is targeting

IoT devices, for the most part because a substantially

number of these devices are more focused on providing

new features to users rather than providing security or

privacy measures [6] for protecting themselves and the

data that they handle. In addition, since they are limited

devices in terms of resources, it is highly unusual to find

them using additional security measures such as

AntiVirus (AV) or Intrusion Detection Systems (IDS) [7].

Due to this insecure nature, the research community, as

well as the industry itself, use honeypots for detecting new

threats and learning about the tactics, techniques and

procedures used by attackers against these devices.

Pa et al. [8] designed a honeypot focused on Teletype

Network (Telnet) attacks by combining a low-interaction

honeypot with a sandboxing system. This way, when a

command is unknown, it is sent to the sandbox in order to

give a reliable response to the entered command, and it is

stored for future requests. Another solution proposed by

Šemić et al. [9] is a low-interaction honeypot for the

Telnet protocol. The honeypot has two frontends, one

dedicated to manual attacks, simulating some of the

commands and components of a real system, and one

specifically designed to respond to Mirai malware.

Other protocols used by IoT devices have been studied

by Wang et al. [10], which proposed a high-interaction

honeypot for Message Queuing Telemetry Transport

(MQTT) and Extensible Messaging and Presence

Protocol (XMPP) modules, while device emulation was

performed via a Representational State Transfer (REST)

Application Programming Interfaces (API). Luo et al. [11]

designed a honeypot with intelligent interaction based on

the responses received from other real IoT devices which

it actively scans and sends requests logged from previous

attacks, and combines it with the use of a reinforcement

learning algorithm to give the best possible response to

attackers.

Vetterl et al. [12] proposed a high-interaction

honeypot for capturing attacks on Customer Premise

Equipment (CPE) and IoT devices through emulation of

their firmware. The honeypot is designed to obtain

information on how the system is compromised and once

the attack vector is known it is blocked.

Tambe et al. [13] introduced the idea of making use of

a high-interaction honeypot using Virtual Private

Network (VPN) tunnels so that a physical IoT device can

be listening in different geographic locations, simulating

multiple devices.

Cowrie [14] is an open-source honeypot that was

created as a continuation and extension of Kippo [15]. It

supports the Telnet and Secure SHell (SSH) protocols and,

although it was initially designed as a medium-interaction

honeypot, it can be used as a high-interaction honeypot

allowing the Cowrie logging system to be used

transparently with real or virtual devices. Fraunholz et al.

[16] uses Cowrie as a medium-interaction honeypot to

perform statistical and behavioral analysis on incoming

attacks.

In summary, there are different studies made by the

research community that use honeypots to analyze the

different attacks on protocols or services used in the IoT.

Unlike most related work, we used a high-interaction

honeypot to collect attacks on Telnet and SSH services,

where we classified the attackers' command sessions and

downloaded malware samples to spread through these

devices.

3 Methodology

In order to learn how SSH and Telnet services are

exploited for gaining access to IoT devices and perform

attacks through them, we deployed a high-interaction

honeypot and monitored the actions and accesses carried

out by exploiters. The methodology followed in this

experiment, which is shown in Figure 1, is explained in

this section. Firstly, we describe the architecture of the

deployed system and then we detail the configuration of

the machines which simulated vulnerable devices. Finally,

we present the analysis carried out in this study.

3.1 System Architecture

The architecture consisted of a private server that was

deployed in Germany. We hardened the server in order not

to allow unauthorized access to the services in this

machine, and, after that, We deployed the honeypot on this

machine and redirected the connections directed to the

SSH and Telnet services to the internal ports used by

Cowrie. We configured Cowrie to work in proxy mode,

redirecting the traffic that reached these services to virtual

machines compatible with QEMU [17]. This allows

Cowrie to become a high-interaction honeypot because

attackers are dealing with a complete system rather than

an emulation of the file system and certain commands,

thus making it more difficult for them to notice that they

are not compromising a real system.

For user authentication, we only considered the root

user and the top 10 most common passwords used by

malware targeting IoT devices [18] as valid ones. This

way, when an attacker entered valid credentials, Cowrie

performed a successful login in the virtual machine,

returned the response from the server of the virtual

machine and started acting as a proxy, redirecting the input

and output of commands between the attacker and the

virtual machine. The proxy mode can be configured to

redirect traffic to virtual machines or devices outside

Cowrie, or Libvirt compatible virtual machines can be

included and Cowrie can take care of deploying and

restarting the machine when needed through this toolkit.

3.2 Virtual machine configuration

For the creation of the virtual machine used to emulate

a real system, we used Buildroot [19], which automates

the process of creating a Linux environment for embedded

systems. Using this tool, we were able to build a Linux

system for the ARM architecture by cross-compiling, so

that, once that an attacker has gained access to the system

and performs a reconnaissance of the environment, they

find that the architecture being emulated is the most used

one for IoT devices.

For the Linux system compiled, we included

compatibility for the old application interface (OABI),

allowing the execution of binaries created for older ARM

architectures. Finally, we included different tools such as

BusyBox, Perl, and Python. as well as SSH and Telnet

servers to allow Cowrie to connect in its proxy mode.

Once the machine was built with Buildroot, we

obtained the kernel that would be emulated and a file

system and utilities that resemble those that an attacker

would find on a real device. The system generated was

emulated using QEMU, and, in order for Cowrie to

manage the virtual machine, it was necessary to generate

an Extensible Markup Language (XML) file containing

the configuration options that QEMU needed to emulate

the machine. Since we are dealing with a high interaction

honeypot, we add a series of preventive measures to

reduce the exposure surface and prevent attackers from

carrying out attacks through our system. We only allow

inbound traffic to SSH and Telnet ports, denying

connection attempts to these ports on the outside. We also

allow connections to port 80 and 8080 commonly used by

the HTTP protocol and by attackers to download malware

samples. Emulated virtual machines are rebooted and

restored after a 10-minute time interval. We believe that

these measures are sufficient to reduce the exposure of the

honeypot, and that they in turn allow the collection of

information on the most prominent attacks.

3.3 Data analysis

In order to evaluate the actions carried out by the

attackers, the metadata that could be extracted from the

stored logs was thoroughly studied. This analysis was

divided into three different tasks: the inspection of the data

associated with the connections, the examination of the

interaction that the attackers made with the system, and the

study the files that were downloaded in our honeypot.

Figure 1: Outline of the methodology followed in this work.

Metadata analysis. In this phase, we analyzed the data

associated with the connections made to our honeypot

system. Firstly, we focused on the connection attempts

made throughout the experiment, and then broke the data

down into days of the week. Secondly, we evaluated all

the login attempts that were made, also studying the

username and password combinations most frequently

used by the attackers. Thirdly, we studied the attacks that

were attempted through the SSH feature known as port

forwarding. This SSH feature allows the redirection of any

Transmission Control Protocol (TCP) port and the sending

of data via SSH, allowing, for example, accessing

geolocation-restricted content, bypassing firewalls, etc.

Therefore, the server would act similarly to a proxy and

the connection data recorded on the target host would be

from the SSH server. Finally, we analyzed the origin of the

attacks by consulting the geolocation of the Internet

Protocol (IP) addresses that interacted with our honeypot

using public IP location services [20].

Interaction analysis. To analyze and classify the

interaction, we extracted all the command sessions for

each of the IP addresses. Then, we cleaned duplicated

sessions from the same IP, i.e., sessions that are exactly

the same and therefore have been created by bots that

made another connection to the system and performed

exactly the same tasks as in other connection. After this,

we standardized the commands by eliminating specific

semantics that can be variable and still be the same

command. For this purpose, we replaced the following

variables by constant values using pattern search and

regular expressions:

• IP addresses and Uniform Resource Locators

(URLs)

• Names of downloaded files or scripts

• Payload hardcoded in commands

• SSH keys

• Inserting users

• Replacing non-existing BusyBox commands

Once the commands entered had been standardized,

we separated each one of them. In addition, those symbols

that allow different commands to be chained together in

the same order, such as the semicolon, were removed.

After this cleaning and standardization stage, each session

was composed of an ordered vector where each element

represented a command.

For measuring the similarity between sequences and

performing the classification, we use the cosine similarity

between two vectors [21]. Given to sequences A and B, the

first step is to transform each one of them into a vector,

obtaining 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵⃗⃗ = {𝑏1, 𝑏2, … , 𝑏𝑛} ,

where 𝑎𝑖 and bi, represent the number of times in which

the command in position i appears in the sequence, and n

is the total number of different commands in the whole set

of sequences that are being compared.

Finally, given two vectors of command sessions, we

compute the cosine similarity as follows:

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
𝐴⃗⋅𝐵⃗⃗

||𝐴⃗||×||𝐵⃗⃗||
=

Σ𝑖=1
𝑛 𝐴𝑖𝐵𝑖

 √Σ𝑖=1
𝑛 𝐴𝑖

2 √Σ𝑖=1
𝑛 𝐵𝑖

2

The obtained result is in the interval [0,1], with 1 meaning

a perfect similarity and 0 a nonexistent one. In other

contexts, this interval can be [-1,1], but in this experiment

it is not possible to obtain negative values for the vectors.

Analysis of downloaded samples. For the analysis and

clustering of the downloaded files in the honeypot, we run

the samples in an IoT sandbox environment [22], which

automatizes the analysis and feature extraction process of

pieces of malware from various architectures. For the

clustering and classification tasks, we follow a dynamic

approach, due to the fact these might be samples that are

packed, so features based on static analysis are less robust

to obfuscation and therefore more prone to false positives.

We run each sample and extract its sequences of system

calls (syscalls) of size N, also known as N-grams. For

example, for the following trace of syscalls: [execve, time,

getpid, getppid], the set of n-grams of size 2 that will be

obtained is: (execve, time), (time, getpid) and (getpid,

getppid). Once that the N-grams from the different

samples were extracted, we calculated the similarity using

the Jaccard index [23], which allowed us to determine the

similarity between two sets in the following way:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑖𝑛𝑑𝑒𝑥(𝑠1, 𝑠2) =
|𝑠1| ∩ |𝑠2|

|𝑠1| ∪ |𝑠2|
,

where the numerator represents the subsets (N-grams)

found in both samples and the denominator indicates all

unique subsets between samples. The result is a value

between 0 and 1 representing the similarity between two

sets.

4 Data Analysis

Our honeypot system ran for a period of 35 days.

During this time, the actions carried out on the system

were monitored and the corresponding data was collected.

This section presents the results than can be extracted

from this experiment.

4.1 Metadata analysis

In this section we analyze the information associated

with the connections or connection attempts that were

logged at the honeypot. Firstly, we perform a study based

on the number of attempts and the time stamp at which

they occurred. Secondly, we analyze the login attempts.

Thirdly, we analyze the connection attempts via SSH

tunnels to other hosts, and finally we analyze the origin of

the IP addresses that interacted with the honeypot.

Analysis of connections. We analyze the timestamp of

the connection attempts recorded by the honeypot using

Spanish local time (Greenwich Mean Time +1). In the

thirty-five days of the experiment, the system captured a

total of 830,053 connection attempts. Figure 2 represents

the number of attempts per protocol. It can be seen that

most of the connections were through the SSH protocol,

reaching a total of 781,339 connection attempts. Which is

more noticeable from this data is that the number of

connections captured via the Telnet protocol (48,714) is

so low, as for years it was the preferred protocol for brute-

force attacks on IoT devices.

As for the timeline of the connection attempts

captured, Figure 3 shows the attempts that occurred on

each of the days of the experiment. Red represents those

attempts that occurred between 00:00 and 08:00, yellow

represents those that occurred between 08:00 and 16:00,

and green represents those that occurred between 16:00

and 00:00. Looking at the results, it can be seen that, on

average, there were 20,000 attempts per day, with this

figure even exceeding 30,000 on some days. In general, in

terms of time periods, the number of attacks remains

uniform and does not show any tendency towards a

specific one. This indicates that most of the attacks were

automated and not focused on out-of-office hours such as

the 00:00 to 08:00 period.

Figure 4 shows the connection attempts that were

made on each day of the week. It can be seen that the

number of attempts is very similar for each day and,

although the peak is reached on Sunday, it does not seem

to follow any trend.

Analysis of login attempts. A total of 769,685

honeypot login attempts were captured, of which 539,369

(70.07%) succeeded in logging into the system and

230,316 (29.93%) were unsuccessful. The successful

logins belonged to 1,534 unique IP addresses, i.e., only

15.45% of the unique attackers managed to access the

system.

Of the login attempts that occurred on the system,

70.91% and 71.19% of the login pairs were generated

from the list of users and passwords used by Mirai and

from a specific dictionary of users and passwords of IoT

devices, respectively. Table 1 shows the top 10 most used

both users and passwords, as well as the top 10 most used

combinations for logging into the system. In the table it

can be seen how the attackers try to use usernames and

passwords that are clearly commands (e.g., iptables, ping,

sh, shell, etc.). This is due to scripts that are not able to

capture the fact that they are facing a system that requires

authentication and the script continues its execution,

evidencing the lack of sophistication of some attacks.

It can be seen that brute-force attacks on SSH and

Telnet credentials are still one of the main methods of

finding vulnerable systems and that the trend has

continued since the release of Mirai, such methods

allowing attackers to compromise systems quickly

without investing too much effort or money in searching

for vulnerabilities or zero-days.

Direct TCP-IP connection analysis. We analyzed the

connection attempts that allowed attackers to create TCP

sessions in an SSH tunnel. In total, there were 1,278,006

connection attempts using this SSH feature, of which

33,804 were unique targeted hosts.It is important to note

Figure 2: Percentage of connections by protocol.

Figure 3: Number of connection attempts captured. Red

represents attempts made between 00:00 and 08:00, yellow

between 08:00 and 16:00 and green between 16:00 and

00:00.

Figure 5: Connection attempts via ssh direct TCP-IP. The blue

nodes represent the hosts or addresses they attempted to connect

to and the red nodes represent the attacker's ip address. The edge

weight indicates the number of connections between both nodes.

Figure 4: Number of connection attempts per day of the week.

that all of these connection attempts were made by only

96 attackers or bots. Figure 5 graphically shows the top 30

hosts to which the most connection attempts were made.

The red nodes represent the IPs of the attackers, while the

blue nodes represent the hosts to which they tried to

connect to. The edges represent whether there were any

connection attempts between the attacker IP and the

targeted node, and the thickness of the edges varies

according to the number of times the attacker tried to

connect to the targeted host through our SSH server. It

should be noted that no connection was made from our

honeypot to the outside. Also, those targeted hosts to

which they tried to connect directly through their IP

address were anonymised. As can be seen in the image,

some well-known domains appear, such as Google,

Amazon, Evernote or the Russian search engine 'ya.ru', to

which 30.5% of the total connection attempts belong to.

Making requests to known domains could be a way to

check whether the redirection is working correctly and

whether they are in a honeypot.

In addition, we analysed the destination ports to which

the requests were directed. Table 2 shows the top 10 ports

and indicates that most of the requests were directed to

connections via the Hypertext Transfer Protocol (HTTP)

and the Hypertext Transfer Protocol Secure (HTTPS).

The rest of the connections in the top 10 are mainly related

to sending and receiving email and the different protocols

used for this. Therefore, they were trying to connect to

Simple Mail Transfer Protocol (SMTP) servers to send

emails anonymously, something commonly used in spam

and phishing campaigns.

Finally, an unusual port can be observed. After

applying Open Source INTelligence (OSINT) [24]

techniques, we observed that this port is used by the

servers of RuneScape [25], an online role-playing game

that is developed by Jagex. This could be used to perform

a Distributed Denial of Service (DDoS) attack on the

game server or to evade bans based on IP addresses in the

game.

Origin of the attacks. In total, 9,926 unique IP addresses

interacted with the system. We obtained the origin of the

addresses by using location services and plotted them on

a map. Figure 6 shows a heat map and the representation

of the existing IP addresses in that geographical area. It

can be seen that the origin of most attacks is in Asia,

Europe and the United States, with China being the most

common location with 28.03% of the IP addresses

collected, followed by the United States (10.89%), France

(5.67%), Brazil (4.49%) and South Korea (4.07%). It is

worth noting that 51.42% of the IP addresses collected

come from Asia, which is twice the number of IPs from

Europe (24.20%). It is also relevant that the origin of the

actors behind the attacks is not necessarily that location

specifically, as they could be using some kind of proxy,

virtual private networks (VPNs), Tor or systems that have

been previously compromised through malware and are

acting as bots looking for other vulnerable systems to

spread malware.

4.2 Interaction classification

This section presents an analysis of the interaction of

the different attacker sessions via the SSH and Telnet

protocols. As discussed in Section 4.1, only 1,534 unique

IP addresses successfully logged in. Out of that entire pool

of IP addresses, at least 1,402, or 91.4%, executed at least

one command. In total, 4,217 sessions were established,

i.e., some of these IP addresses connected to the honeypot

several times.
To analyze the interaction, automated techniques were

applied to classify the sessions and extract knowledge.

Firstly, as described in Section 3.3, the commands entered

were standardized and the most commonly used

commands were extracted. Table 3 shows the top 10

commands most used by attackers. In the table, we can see

some that are quite common, such as system, shell, and

enable, and which are normally used on some devices

Users Total Passwords Total Pairs Total

root 640,170 admin 411,542 root/admin 410,365

admin 16,006 root 126,693 root/root 124,801

enable 4,295 123456 9,781 enable/system 4,293

sh 4,200 123 4,401 sh/shell 4,185

test 2,927 system 4,394 ping ; sh//bin/bu.. 2,002

user 2,596 shell 4,198 root/54321 1,888

ping ; sh 2,002 /bin/busy… 3,549 admin/888888 1,882

ubuntu 1,921 888888 2,771 root/8888 1,825

postgres 1,836 5555 2,590 root/5555 1,824

Iptables -F 1,547 password 2,095 root/111111111 1,821

Port Total Protocol information

443 526,670 https

80 508,109 http

25 176,972 smtp

993 24,855 imaps

587 22,627 smtp over tls

465 5,183 smtp over tls

43594 4,802 runescape servers

143 3,409 imap

26 1,988 smtp

2525 1,952 smtp

Table 1:Top 10 users, passwords and combinations of both most used by attackers.

Table 2: Top 10 ports to which petitions were addressed.

such as routers to obtain shell or more privileged

commands. Also, the command “echo CODE >> .file”,

which dumps binary code to a file, can be observed. The

most striking command is the one that was repeated most

often as it is an invalid command. Attackers use the

command /bin/busybox followed by non-existent

“command” names such as CORONA, TSUNAMI,

FBOT, etc., in order to find out if the previous commands

have been executed correctly [26].

Secondly, the similarity between each pair of sessions

was calculated using the cosine similarity. In order to

consider two similar sessions, different thresholds were

tested, and finally we selected one with the value of 0.9,

i.e., two sessions are similar if the cosine similarity is

greater than 0.9. Figure 7 shows the results of clustering

sessions based on the commands entered during the

session. The nodes represent the sessions, and the edges

connect two sessions if their cosine similarity exceeds the

set threshold. It can be seen that most of the sessions are

similar to each other and that they are mostly grouped in

7-8 clusters, indicating that most of the connections were

made by bots searching for vulnerable systems to

download and install malware using similar tactics,

techniques and procedures (TTP).

Command Total

/bin/busybox BUSYBOX 6,065

sh 4,483

shell 4,197

system 4,171

enable 4,171

linuxshell 3,397

/bin/busybox cat /bin/busybox 2,629

>.file 2,099

>file 1,930

echo CODE >>.file 1,272

Figure 6: Origin of the attacks received in the honeypot

Figure 7: Clustering of sessions according to the commands

entered. Each node represents a session and edges between

two nodes indicate that the similarity is above the set

threshold of 0.9.

Table 3: Top 10 most used commands.

4.3 Downloaded malware analysis

This section presents the results of the analysis of the

samples collected by the honeypot. In total, 1,578 samples

were collected, of which 710 were unique. The unique

samples included 590 Linux executable binary files, 35

gzipped files, 82 bash script files and 3 perl scripts.

Binary files. These were executable and Linkable Format

(ELF) binary files, mainly from the 32-bit ARM

architecture (87.46%). The rest of the samples

corresponded to other architectures such as Intel 80386,

Microprocessor without Interlocked Pipeline Stages

(MIPS), etc. For the classification of the samples, the

syscall sequences were extracted as discussed in Section

3.3, and N-grams were extracted for each syscall sequence

using four as the N-gram size. We use a dynamic approach

and the extraction of syscalls since it allows analyzing and

relating samples from other architectures (i.e., ARM,

MIPS, Intel 80386). Figure 8 shows the results of the

clustering of the collected samples. The nodes represent

each of the samples and the edges join nodes that have a

similarity greater than 80%. It can be seen that there is one

cluster that stands out from the rest, and then there are

small clusters or sets of connected samples.

We applied reverse engineering techniques in

different samples from each cluster to confirm that the

samples were clustered correctly. The samples that are

clustered with any other sample based on the established

similarity threshold are the following:

• Hajime: To this category belong 70.5% of

the samples found, and it is this grouping

that stands out from the rest in Figure 8. This

sample is Hajime's downloader, a malware

that first appeared in 2016 and spreads

mainly via Telnet and vulnerabilities whose

exploits it has been incorporating into its

scanning and propagation module [27]. It is

a botnet that communicates with its C&C

through a decentralized network and its real

purpose is so far unknown as it has not

launched any denial-of-service (DoS)

attacks [28], [29]. The binaries found all

have the same size and are responsible for

downloading the sample from the next phase

[30]. Mainly, it is the same binary with only

changes in the address and download port of

the next stage of the malware.

• Mirai: This is the most popular family of

malware that attacks IoT devices. It became

famous because it generated the largest

DDoS attack using IoT devices [31]. Its

source code was leaked in 2016 and since

then multiple Mirai variants have appeared.

It accounts for 9.83% of the total binary

files.

• Gafgyt: This accounts for 6.44% of the

executable files collected. It is malware

whose source code was leaked in 2015 and,

like with Mirai, there are many variants of

this malware family. Among its main

features is the ability to perform various

DDoS attacks [32].

• Dofloo: This is malware that allows DDoS

attacks and the loading of cryptocurrency

miners [33], [34], and accounts for 1.52% of

the samples.

• Xorddos: This is malware that affects

Linux-type devices and allows different

types of DDoS attacks [35]. This family

accounts for 2.54% of the samples.

• Others: The remaining samples, which

were not related to any other sample on the

basis of the similarity index, belong to this

category.

Bash-script. These were script files downloaded in the

sessions and designed to download malware for different

architectures and execute it. All scripts work in a similar

way: 1) they move to a directory where the user has

permissions; 2) they download the malware for different

architectures via wget, tftp or curl; 3) they give the

downloaded file execution permissions; and 4) they

execute the file with or without arguments. All files

perform the same task and differ only in the IP addresses

they try to connect to, the filename and the architectures

supported by the malware.

Perl-script. The downloaded scripts were Internet Relay

Chat (IRC) bots written in Perl with command execution

capabilities. All three scripts were based on source code

that is publicly available on the Internet, with two of them

even having the same comments as the versions they were

based on [36], [37].

Compressed files. These were files in “tar.gz” format that

had a hidden folder with the name rsync. The sum of all

the unzipped files was 979, 106 of which were unique.

There were 34 shared libraries, 31 executable files and 40

script files. In general, they were different versions of

Figure 8: Clustering of the samples captured in the honeypot.

Each node is a sample and an edge connects two nodes if they

have a similarity greater than 80%.

malware designed to mine cryptocurrencies. Such botnets

provide cybercriminals with a network for distributed

mining and financial gain, either by saving electricity bills

or by obtaining cryptocurrencies [38]. Each compressed

file contains several scripts that are responsible for finding

and stopping the execution of any other mining malware

and initiating the execution of its own malware. They also

carry different versions of the executable used to perform

the mining as well as the necessary libraries for ARM, x86

and x86-64 architectures.

5 Limitations and future work

This study is focused on Telnet and SSH services and

the actions that attackers take once they take control. In

view of the results obtained, it can be seen that brute force

attacks on these services continue to be one of the

preferred methods to take control of devices and infect

them. However, in addition to brute force, attackers also

exploit known vulnerabilities in other services to gain

access to devices (e.g., HTTP, HNAP, or UPnP).

Not only conventional protocols are targeted by

cybercriminals, IoT-centered ones such as MQTT are as

well. The study of these types of protocols opens an

interesting line of research that, although is out of the

scope of our work, can lead to gaining additional

knowledge on how cybercriminals behave when operating

in the IoT.

Additionally, the use of search engines in the early

phases of the fingerprinting technique is another

interesting aspect in which to delve into. This is of added

interest when working with honeypots, as making them

accessible by these types of tools can lead to

cybercriminals suspecting that the IoT system that is

behind the service is not a real one.

6 Conclusions
In this study, a high-interaction honeypot has been

deployed for a period of one month, mimicking the

behaviour of an IoT device. The data captured have been

analysed yielding valuable insight of the actions carried

out by the attackers once the Telnet and SSH services had

been compromised. Firstly, a statistical analysis was

performed based on connection attempts, authentication

attempts, IP addresses and attack attempts using SSH port

forwarding. Then, we analysed the interaction of the

attackers with the honeypot and classified the sessions

established. Finally, we analysed the different files that

were downloaded on our honeypot system by classifying

the ELF format binary files.

During this experiment, a total of 830,053 connection

attempts were made to the system, the majority of them,

namely 781,339, through the SSH protocol, with the rest

of them made via Telnet. 769,685 times these connections

were translated into login attempts, with 15.45% of them

succeeding. In these sessions, 1,578 malicious samples

were downloaded, and, after clustering them, it was

determined that 70.5% of them belonged to the Hajime

downloader malware family. However, others such as

Mirai, Gafgyt, Dofloo and Xorddos were detected. With

respect to the origin of the attacks, 9,926 unique IP

addresses interacted with the system, with the top three

attacking countries being China, the United Stated and

France, with 28.03%, 10.89%, and 5.67% of connections

respectively.

The results show that most of the sessions established

were conducted in an automated manner by bots searching

for brute-force vulnerable servers on which to install and

execute their malware. With respect to the variants found,

it can be concluded that there are old malware families

that are still operating and actively look for new systems

to add to their botnet, as well as others that aim to use

these devices for cryptocurrency mining.

With this work we have been able to gain a better

understanding of the actions that attackers take when

targeting vulnerable services, thus providing the research

community with valuable knowledge on the behaviour of

cybercriminals in the IoT, which is one of the main issues

currently under study due to their importance for users and

their data.

ACKNOWLEDGMENTS
This work has been supported by the Spanish Ministry of

Science and Innovation under the project PID2021-
123627OB-C52, by the Regional Government of Castilla-

La Mancha under the SBPLY/21/180501/000195, by the

Spanish Education, Culture and Sports Ministry under

grant FPU 17/03105 and by

MCIN/AEI/10.13039/501100011033 and European

Union NextGenerationEU/PRTR under grant TED2021-

131115A-I00. Guillermo Suarez-Tangil was funded by

the ``Ramon y Cajal'' Fellowship RYC-2020-029401-I,

and supported by TED2021-132900A-I00 from the

Spanish Ministry of Science and Innovation, both grants

funded by MCIN/AEI/10.13039/501100011033 and ESF

“The European Social Fund invests in your future''.

References
[1] D. Demeter and M. Preuss and Y. Shmelev, IoT: a

malware story - Securelist, 2019, https://securelist.com/

iot-a-malware-story/94451/

[2] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil,

and J. Schönfelder, A survey on honeypot software and

data analysis, ArXiv Prepr. ArXiv160806249, 2016.

[3] W. Fan, Z. Du, D. Fernández, and V. A. Villagrá,

Enabling an Anatomic View to Investigate Honeypot

Systems: A Survey, IEEE Systems Journal, vol. 12, no. 4,

pp. 3906–3919, December, 2018.

[4] W. Z. Cabral, C. Valli, L. F. Sikos, and S. G.

Wakeling, Advanced cowrie configuration to increase

honeypot deceptiveness, in IFIP International

Conference on ICT Systems Security and Privacy

Protection, Oslo, Norway, 2021, pp. 317–331.

[5] A. Vetterl and R. Clayton, Bitter Harvest:

Systematically Fingerprinting Low- and Medium-

interaction Honeypots at Internet Scale, 12th USENIX

Workshop on Offensive Technologies, Baltimore,

Maryland, 2018.

[6] M. Frustaci, P. Pace, G. Aloi, and G. Fortino,

Evaluating Critical Security Issues of the IoT World:

Present and Future Challenges, IEEE Internet of Things

Journal, vol. 5, no. 4, pp. 2483–2495, August, 2018.

[7] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu,

C.-K. Chen, and S. Shieh, IoT Security: Ongoing

Challenges and Research Opportunities, 2014 IEEE 7th

International Conference on Service-Oriented Computing

and Applications, Matsue, Japan, 2014, pp. 230–234.

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto,

T. Kasama, and C. Rossow, IoTPOT: Analysing the Rise

of IoT Compromises, 9th USENIX Conference on

Offensive Technologies, Washington, D.C., 2015.

[9] H. Šemić and S. Mrdovic, IoT honeypot: A multi-

component solution for handling manual and Mirai-based

attacks, 2017 25th Telecommunication Forum, Belgrade,

Serbia, 2017, pp. 1–4.

[10] M. Wang, J. Santillan, and F. Kuipers, ThingPot: an

interactive Internet-of-Things honeypot, ArXiv Prepr.

ArXiv180704114, 2018.

[11] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang,

Iotcandyjar: Towards an intelligent-interaction honeypot

for iot devices, Black Hat, Las Vegas, Nevada, 2017, pp.

1–11.

[12] A. Vetterl and R. Clayton, Honware: A virtual

honeypot framework for capturing CPE and IoT zero

days, 2019 APWG Symposium on Electronic Crime

Research, Pittsburgh, Pennsylvania, 2019, pp. 1–13.

[13] A. Tambe, Y. L. Aung, R. Sridharan, M. Ochoa, N.

Tippenhauer, A. Shabtai, and Y. Elovici, Detection of

Threats to IoT Devices Using Scalable VPN-Forwarded

Honeypots, Proceedings of the Ninth ACM Conference on

Data and Application Security and Privacy, New York,

USA, 2019, pp. 85–96.

[14] M. Oosterhof, Cowrie SSH and Telnet Honeypot.

2015. https://www.cowrie.org/

[15] U. Tamminen, Kippo honeypot. 2014.

https://github.com/desaster/kippo

[16] D. Fraunholz, D. Krohmer, S. D. Anton, and H.

Dieter Schotten, Investigation of cyber crime conducted

by abusing weak or default passwords with a medium

interaction honeypot, 2017 International Conference on

Cyber Security And Protection Of Digital Services,

London, UK, 2017, pp. 1–7.

[17] F. Bellard, QEMU, a Fast and Portable Dynamic

Translator, Proceedings of the Annual Conference on

USENIX Annual Technical Conference, Anaheim,

California, 2005, p. 41.

[18] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J.

N. Kim, An In-Depth Analysis of the Mirai Botnet, 2017

International Conference on Software Security and

Assurance, Altoona, Pennsylvania, 2017, pp. 6–12.

[19] A. Sirotkin, Roll Your Own Embedded Linux System

with Buildroot, Linux Journal, vol. 2011, no. 206, June.

2011.

[20] IP-API.com, Geolocation API. 2022. https://ip-

api.com/

[21] B. Li and L. Han, Distance weighted cosine similarity

measure for text classification, International conference

on intelligent data engineering and automated learning,

Hefei, China, 2013, pp. 611–618.

[22] J. Carrillo-Mondejar, J. M. Castelo, C. Núñez-

Gómez, J. Roldán, and J. L. Martínez, Automatic Analysis

Architecture of IoT Malware Samples, Security and

Communication Networks, vol. 2020, p. 8810708,

October. 2020.

[23] S. Fletcher, M. Z. Islam, Comparing sets of patterns

with the Jaccard index, Australasian Journal of

Information Systems, vol. 22, 2018.

[24] J. Pastor-Galindo, P. Nespoli, F. Gómez, and G.

Martínez, The Not Yet Exploited Goldmine of OSINT:

Opportunities, Open Challenges and Future Trends, IEEE

Access, vol. 8, pp. 10282–10304, 2020.

[25] Jagex, RuneScape Online Community - Forums,

2022, https://www.runescape.com/community

[26] M. S. Pour, J. Khoury, and E. Bou-Harb,

HoneyComb: A Darknet-Centric Proactive Deception

Technique For Curating IoT Malware Forensic Artifacts,

NOMS 2022-2022 IEEE/IFIP Network Operations and

Management Symposium, Budapest, Hungary, 2022, pp.

1–9.

[27] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and

D. Levin, Measurement and analysis of Hajime, a peer-to-

peer IoT botnet, Network and Distributed Systems

Security Symposium, San Diego, California, 2019.

[28] J. Leyden, Mysterious Hajime botnet has pwned

300,000 IoT devices, 2017. https://www.theregister.com/

2017/ 04/27/hajime_iot_botnet/

[29] S. Yamaguchi, White-Hat Worm to Fight Malware

and Its Evaluation by Agent-Oriented Petri Nets, Sensors,

vol. 20, no. 2, 2020.

[30] S. Edwards and ioannis Profetis, Hajime: Analysis

of a decentralized internet worm fot IoT devices, Rapidity

Networks, 2016.

[31] M. Antonakakis, T. April, M. Bailey, M. Bernhard,

E. Bursztein, J. Cochran, Z. Durumeric, J.A. Halderman,

L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J.

Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,

Y. Zhou, Understanding the Mirai Botnet, 26th USENIX

Security Symposium, Vancouver, BC, 2017, pp. 1093–

1110.

[32] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion,

C. Hoepers, K. Steding-Jessen, M. Chaves, I. Cunha, D.

Guedes and W. Meira, The Evolution of Bashlite and

Mirai IoT Botnets, 2018 IEEE Symposium on Computers

and Communications, Natal, Brazil, 2018, pp. 00813–

00818.

[33] K. Angrishi, Turning internet of things (iot) into

internet of vulnerabilities (iov): Iot botnets, ArXiv Prepr.

ArXiv170203681, 2017.

[34] S. Gatlan, Exposed Docker APIs Abused by DDoS,

Cryptojacking Botnet Malware, BleepingComputer,

2019. https://www.bleepingcomputer.com/news/security/

exposed-docker-apis-abused-by-ddos-cryptojacking-

botnet-malware/

[35] M. Donno, N. Dragoni, A. Giaretta, and A.

Spognardi, Analysis of DDoS-capable IoT malwares,

2017 Federated Conference on Computer Science and

Information Systems, Prague, Czech Republic, 2017, pp.

807–816.

[36] H3LLS1NG, Shadow-Network/perl-scripts, 2020.

https://github.com/Shadow-Network/perl-scripts

[37] Phl4nk, Ircbot. Feb, 2018. https://github.com/

phl4nk/ircbot

[38] J. Carrillo-Mondéjar, J. L. Martínez, and G. Suarez-

Tangil, Characterizing Linux-based malware: Findings

and recent trends, Future Generation Computer Systems,

vol. 110, pp. 267–281, 2020.

Javier Carrillo-Mondéjar received the

B.Sc. and M.Sc. degrees in Computer

Science and Engineering and the Ph.D.

degree in Advanced Computing

Technologies from the University of

Castilla-La Mancha, Spain, in 2016, 2017,

and 2022, respectively. His research

interests are related to malware detection and

classification techniques, with a particular focus on

IoT/firmware cybersecurity.

Juan Manuel Castelo Gómez received his

M.Sc degree in Computer Science from the

University of Castilla La Mancha (Spain) in

2017, and in 2021 obtained his Ph.D in

Advanced Information Technologies. His

research interests are related to

cybersecurity, especially digital forensics, as well as

malware detection.

José Roldán-Gómez obtained a B.S. degree

in Computer Engineering in 2017, a M.S.

degree in Computer Engineering in 2018,

and the Ph.D. degree in Advanced

Computing Technologies in 2023, all of

them at the University of Castilla-La

Mancha. His main interests are artificial intelligence

applied to threat detection in IoT environments and

automatic rule generation in CEP engines.

Sergio Ruiz Villafranca received a BSc

degree in Computer Engineering from the

University of Castilla-La Mancha in 2017.

Since 2021, he is a Ph.D student in

Advanced Information Technologies at the

aforementioned university. His research

interests are related to cybersecurity, especially Industrial

Internet of Things, machine learning for anomaly

detection.

Dr. Guillermo Suarez-Tangil is with

IMDEA Networks Institute. His research

focuses on systems security and malware

analysis and detection. In particular, his

area of expertise lies in the study of smart

malware, ranging from the detection of advanced

obfuscated malware to the automated analysis of targeted

malware. Before joining IMDEA, he was Lecturer at

King's College London (KCL) and before that senior

research associate at University College London (UCL),

where he was also actively involved in other research

areas involved with detecting and preventing hate in OSN

and Mass-Marketing Fraud.

	Abstract
	3 Methodology
	3.1 System Architecture
	3.2 Virtual machine configuration
	3.3 Data analysis
	4.1 Metadata analysis
	4.2 Interaction classification
	4.3 Downloaded malware analysis
	5 Limitations and future work
	6 Conclusions
	ACKNOWLEDGMENTS

