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Abstract 
Since the inception of the Internet of Things (IoT), the 

security measures implemented on its devices have been 

too weak to ensure the appropriate protection of the data 

that they handle. Appealed by this, cybercriminals 

continuously seek out for vulnerable units to control, 

leading to attacks spreading through networks and 

infecting a high number of devices. On top of that, while 

the IoT has evolved to provide a higher degree of security, 

the techniques used by attackers have done so as well, 

which has led to the need of continuously studying the 

way in which these attacks are performed to gather 

significant knowledge for the development of the 

pertinent security measures. 

In view of this, we analyze the state of IoT attacks by 

developing a high-interaction honeypot for SSH and 

Telnet services that simulates a custom device with the 

ARM architecture. This study is carried out in two steps. 

Firstly, we analyze and classify the interaction between 

the attacker and the devices by clustering the commands 

that they sent in the compromised Telnet and SSH 

sessions. Secondly, we study the malware samples that are 

downloaded and executed in each session and classify 

them based on the sequence of system calls that they 

execute at runtime. In addition, apart from studying the 

active data generated by the attacker, we extract the 

information that is left behind after a connection with the 

honeypot by inspecting the metadata associated with it. In 

total, more than 1,578 malicious samples were collected 

after 9,926 unique IP addresses interacted with the system, 

with the most downloaded malware family being Hajime, 

with 70.5% of samples belonging to it, and also detecting 

others such as Mirai, Gafgyt, Dofloo and Xorddos. 

Keywords: Honeypot, Malware, IoT, Data analytics, 

Expert systems 
 

1  Introduction 
 

Nowadays, there are innumerable devices connected 

to the Internet which interact with each other, providing 

services to users that, until a few years ago, seemed 

unthinkable. The result of integrating technology in new 

environments different from conventional ones, namely 

the cloud, desktop or mobile, is what is we know as the 

Internet of Things (IoT). IoT devices make people's lives 

easier by easing tasks that users perform on a daily basis. 

Using a mobile device for controlling household 

appliances or utilizing your own voice for turning on the 

light or the television are some examples. 

This means that the IoT is heavily involved in the 

activities that a person carries out in many aspects of their 

life. As a consequence, due to the high number of 

interactions that are made between user and device, both 

actively and passively, the resulting volume of data that is 

managed in this environment is immense. In addition, 

since some of this data can have a high degree of 

sensitivity, cybercriminals find it very appealing to attack 

IoT units. Unfortunately, although these devices provide a 

great number of features that are attractive to users, the 

security measures implemented on them are not strong 

enough to stop these attacks, thus making them vulnerable 

due to such simple aspects such as using default and easily 
guessable user and password combinations, having weak 

default settings or running well-known-to-be outdated and 

vulnerable software. 

The characteristics mentioned above, together with the 

lack of knowledge that many users have regarding the use 

of new technologies, have led cybercriminals to focus 

many of their efforts on attacking IoT devices and 

obtaining financial returns from them. According to a 

recent report [1], the number of attacks on these devices 

reached one hundred million in 2019, exceeding the 

number of attacks in 2018 by seven times. 

Under these circumstances, it is important to 

understand what activities attackers perform in order to 

compromise IoT devices and what actions they carry out 

once they have gained access to a system. To study this, 

the use of honeypots, which are devices which simulate 

systems that present some kind of vulnerability, is a very 

effective approach to attract attackers, and a technique that 

has been successfully used in other experiments such as 

[2]. This allows for different types of attacks to be 

captured and, upon analysis, the extraction of knowledge 

regarding the multiple techniques and tools used by 

attackers for carrying out their criminal schemes. 

In this work, we have deployed a high interaction 

honeypot [3] that simulates a device with the Advanced 

Reduced Instruction Set Computer Machine (ARM) 

architecture. After performing an analysis of the 

interaction between this infrastructure and the attackers, 

the main contributions that can be extracted from this work 

are the following: 

• We present a statistical analysis of the 

connections that took place in our honeypot, 

showing the geographical information about 

the origin of the attacks as well as the most 

commonly usernames and passwords used in 



brute force attacks, and the different remote 

hosts to which the attackers tried to connect 

once they had obtained valid credentials. 

• We perform an evaluation of the interaction 

of the attackers with our system, classifying 

the sessions established according to the 

sequence of commands introduced by the 

attackers. 

• We present an analysis of the files 

downloaded by the attackers in our 

infrastructure, mainly consisting of binary 

files, but also bash-scripts and compressed 

files. 

• We evaluate the similarity between each pair 

of collected files and classify them using N-

grams together with the Jaccard index. 

The remainder of this paper is organized as follows. 

Section 2 studies the proposals form the scientific 

community. Section 3 describes the methodology 

followed, and Section 4 presents the data analysis for the 

experiment that was carried out. Finally, Section 5 

presents the main conclusions. 

 

2  Related work 
 

The concept of a honeypot was first introduced more 

than two decades ago when the first worms started to 

spread through Windows and Linux systems [2]. 
Honeypots are monitored systems which are exposed to 

the Internet with the aim of obtaining information about 

attacks that are occurring in real time. These systems can 

be classified as low, medium and high interaction 

depending on the functionality that is available for 

attackers [3]. Low and medium interaction systems do not 

present a complete system to the attacker (i.e., lack of 

commands, static file system or fixed command outputs 

[4]), while high interaction systems do provide a complete 

system to attackers and, therefore, it makes it difficult to 

fingerprint the honeypot based on its interaction or the 

tools that are available [5]. 

Nowadays, one of the main attack trends is targeting 

IoT devices, for the most part because a substantially 

number of these devices are more focused on providing 

new features to users rather than providing security or 

privacy measures [6] for protecting themselves and the 

data that they handle. In addition, since they are limited 

devices in terms of resources, it is highly unusual to find 

them using additional security measures such as 

AntiVirus (AV) or Intrusion Detection Systems (IDS) [7]. 

Due to this insecure nature, the research community, as 

well as the industry itself, use honeypots for detecting new 

threats and learning about the tactics, techniques and 

procedures used by attackers against these devices. 

Pa et al. [8] designed a honeypot focused on Teletype 

Network (Telnet) attacks by combining a low-interaction 

honeypot with a sandboxing system. This way, when a 

command is unknown, it is sent to the sandbox in order to 

give a reliable response to the entered command, and it is 

stored for future requests. Another solution proposed by 

Šemić et al. [9] is a low-interaction honeypot for the 

Telnet protocol. The honeypot has two frontends, one 

dedicated to manual attacks, simulating some of the 

commands and components of a real system, and one 

specifically designed to respond to Mirai malware. 

Other protocols used by IoT devices have been studied 

by Wang et al. [10], which proposed a high-interaction 

honeypot for Message Queuing Telemetry Transport 

(MQTT) and Extensible Messaging and Presence 

Protocol (XMPP) modules, while device emulation was 

performed via a Representational State Transfer (REST) 

Application Programming Interfaces (API). Luo et al. [11] 

designed a honeypot with intelligent interaction based on 

the responses received from other real IoT devices which 

it actively scans and sends requests logged from previous 

attacks, and combines it with the use of a reinforcement 

learning algorithm to give the best possible response to 

attackers. 

Vetterl et al. [12] proposed a high-interaction 

honeypot for capturing attacks on Customer Premise 

Equipment (CPE) and IoT devices through emulation of 

their firmware. The honeypot is designed to obtain 

information on how the system is compromised and once 

the attack vector is known it is blocked. 

Tambe et al. [13] introduced the idea of making use of 

a high-interaction honeypot using Virtual Private 

Network (VPN) tunnels so that a physical IoT device can 

be listening in different geographic locations, simulating 

multiple devices. 

Cowrie [14] is an open-source honeypot that was 

created as a continuation and extension of Kippo [15]. It 

supports the Telnet and Secure SHell (SSH) protocols and, 

although it was initially designed as a medium-interaction 

honeypot, it can be used as a high-interaction honeypot 

allowing the Cowrie logging system to be used 

transparently with real or virtual devices. Fraunholz et al. 

[16] uses Cowrie as a medium-interaction honeypot to 

perform statistical and behavioral analysis on incoming 

attacks.  

In summary, there are different studies made by the 

research community that use honeypots to analyze the 

different attacks on protocols or services used in the IoT. 

Unlike most related work, we used a high-interaction 

honeypot to collect attacks on Telnet and SSH services, 

where we classified the attackers' command sessions and 

downloaded malware samples to spread through these 

devices. 

 

3  Methodology 
 

In order to learn how SSH and Telnet services are 

exploited for gaining access to IoT devices and perform 

attacks through them, we deployed a high-interaction 

honeypot and monitored the actions and accesses carried 

out by exploiters. The methodology followed in this 

experiment, which is shown in Figure 1, is explained in 

this section. Firstly, we describe the architecture of the 

deployed system and then we detail the configuration of 

the machines which simulated vulnerable devices. Finally, 

we present the analysis carried out in this study.   

 



3.1 System Architecture 
 

The architecture consisted of a private server that was 

deployed in Germany. We hardened the server in order not 

to allow unauthorized access to the services in this 

machine, and, after that, We deployed the honeypot on this 

machine and redirected the connections directed to the 

SSH and Telnet services to the internal ports used by 

Cowrie. We configured Cowrie to work in proxy mode, 

redirecting the traffic that reached these services to virtual 

machines compatible with QEMU [17]. This allows 

Cowrie to become a high-interaction honeypot because 

attackers are dealing with a complete system rather than 

an emulation of the file system and certain commands, 

thus making it more difficult for them to notice that they 

are not compromising a real system. 

For user authentication, we only considered the root 

user and the top 10 most common passwords used by 

malware targeting IoT devices [18] as valid ones. This 

way, when an attacker entered valid credentials, Cowrie 

performed a successful login in the virtual machine, 

returned the response from the server of the virtual 

machine and started acting as a proxy, redirecting the input 

and output of commands between the attacker and the 

virtual machine. The proxy mode can be configured to 

redirect traffic to virtual machines or devices outside 

Cowrie, or Libvirt compatible virtual machines can be 

included and Cowrie can take care of deploying and 

restarting the machine when needed through this toolkit. 

 

3.2 Virtual machine configuration 
 

For the creation of the virtual machine used to emulate 

a real system, we used Buildroot [19], which automates 

the process of creating a Linux environment for embedded 

systems. Using this tool, we were able to build a Linux 

system for the ARM architecture by cross-compiling, so 

that, once that an attacker has gained access to the system 

and performs a reconnaissance of the environment, they 

find that the architecture being emulated is the most used 

one for IoT devices.  

For the Linux system compiled, we included 

compatibility for the old application interface (OABI), 

allowing the execution of binaries created for older ARM 

architectures. Finally, we included different tools such as 

BusyBox, Perl, and Python. as well as SSH and Telnet 

servers to allow Cowrie to connect in its proxy mode. 

Once the machine was built with Buildroot, we 

obtained the kernel that would be emulated and a file 

system and utilities that resemble those that an attacker 

would find on a real device. The system generated was 

emulated using QEMU, and, in order for Cowrie to 

manage the virtual machine, it was necessary to generate 

an Extensible Markup Language (XML) file containing 

the configuration options that QEMU needed to emulate 

the machine. Since we are dealing with a high interaction 

honeypot, we add a series of preventive measures to 

reduce the exposure surface and prevent attackers from 

carrying out attacks through our system. We only allow 

inbound traffic to SSH and Telnet ports, denying 

connection attempts to these ports on the outside. We also 

allow connections to port 80 and 8080 commonly used by 

the HTTP protocol and by attackers to download malware 

samples. Emulated virtual machines are rebooted and 

restored after a 10-minute time interval. We believe that 

these measures are sufficient to reduce the exposure of the 

honeypot, and that they in turn allow the collection of 

information on the most prominent attacks. 

 

3.3 Data analysis 
 

In order to evaluate the actions carried out by the 

attackers, the metadata that could be extracted from the 

stored logs was thoroughly studied. This analysis was 

divided into three different tasks: the inspection of the data 

associated with the connections, the examination of the 

interaction that the attackers made with the system, and the 

study the files that were downloaded in our honeypot. 

Figure 1: Outline of the methodology followed in this work. 



Metadata analysis. In this phase, we analyzed the data 

associated with the connections made to our honeypot 

system. Firstly, we focused on the connection attempts 

made throughout the experiment, and then broke the data 

down into days of the week. Secondly, we evaluated all 

the login attempts that were made, also studying the 

username and password combinations most frequently 

used by the attackers. Thirdly, we studied the attacks that 

were attempted through the SSH feature known as port 

forwarding. This SSH feature allows the redirection of any 

Transmission Control Protocol (TCP) port and the sending 

of data via SSH, allowing, for example, accessing 

geolocation-restricted content, bypassing firewalls, etc. 

Therefore, the server would act similarly to a proxy and 

the connection data recorded on the target host would be 

from the SSH server. Finally, we analyzed the origin of the 

attacks by consulting the geolocation of the Internet 

Protocol (IP) addresses that interacted with our honeypot 

using public IP location services [20]. 

Interaction analysis. To analyze and classify the 

interaction, we extracted all the command sessions for 

each of the IP addresses. Then, we cleaned duplicated 

sessions from the same IP, i.e., sessions that are exactly 

the same and therefore have been created by bots that 

made another connection to the system and performed 

exactly the same tasks as in other connection. After this, 

we standardized the commands by eliminating specific 

semantics that can be variable and still be the same 

command. For this purpose, we replaced the following 

variables by constant values using pattern search and 

regular expressions: 

• IP addresses and Uniform Resource Locators 

(URLs) 

• Names of downloaded files or scripts 

• Payload hardcoded in commands 

• SSH keys 

• Inserting users 

• Replacing non-existing BusyBox commands 

Once the commands entered had been standardized, 

we separated each one of them. In addition, those symbols 

that allow different commands to be chained together in 

the same order, such as the semicolon, were removed. 

After this cleaning and standardization stage, each session 

was composed of an ordered vector where each element 

represented a command. 

For measuring the similarity between sequences and 

performing the classification, we use the cosine similarity 

between two vectors [21]. Given to sequences A and B, the 

first step is to transform each one of them into a vector, 

obtaining 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}  and 𝐵⃗⃗ = {𝑏1, 𝑏2, … , 𝑏𝑛} , 

where 𝑎𝑖  and bi, represent the number of times in which 

the command in position i appears in the sequence, and n 

is the total number of different commands in the whole set 

of sequences that are being compared. 

Finally, given two vectors of command sessions, we 

compute the cosine similarity as follows: 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
𝐴⃗⋅𝐵⃗⃗

||𝐴⃗||×||𝐵⃗⃗||
=

Σ𝑖=1
𝑛 𝐴𝑖𝐵𝑖

   √Σ𝑖=1
𝑛 𝐴𝑖

2 √Σ𝑖=1
𝑛 𝐵𝑖

2
 

The obtained result is in the interval [0,1], with 1 meaning 

a perfect similarity and 0 a nonexistent one. In other 

contexts, this interval can be [-1,1], but in this experiment 

it is not possible to obtain negative values for the vectors. 

Analysis of downloaded samples. For the analysis and 

clustering of the downloaded files in the honeypot, we run 

the samples in an IoT sandbox environment [22], which 

automatizes the analysis and feature extraction process of 

pieces of malware from various architectures. For the 

clustering and classification tasks, we follow a dynamic 

approach, due to the fact these might be samples that are 

packed, so features based on static analysis are less robust 

to obfuscation and therefore more prone to false positives. 

We run each sample and extract its sequences of system 

calls (syscalls) of size N, also known as N-grams. For 

example, for the following trace of syscalls: [execve, time, 

getpid, getppid], the set of n-grams of size 2 that will be 

obtained is: (execve, time), (time, getpid) and (getpid, 

getppid). Once that the N-grams from the different 

samples were extracted, we calculated the similarity using 

the Jaccard index [23], which allowed us to determine the 

similarity between two sets in the following way:  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑖𝑛𝑑𝑒𝑥(𝑠1, 𝑠2) =
|𝑠1| ∩ |𝑠2|

|𝑠1| ∪ |𝑠2|
, 

where the numerator represents the subsets (N-grams) 

found in both samples and the denominator indicates all 

unique subsets between samples. The result is a value 

between 0 and 1 representing the similarity between two 

sets. 

 

4  Data Analysis 
 

Our honeypot system ran for a period of 35 days. 

During this time, the actions carried out on the system 

were monitored and the corresponding data was collected. 

This section presents the results than can be extracted 

from this experiment.  

 

4.1 Metadata analysis 
 

In this section we analyze the information associated 

with the connections or connection attempts that were 

logged at the honeypot. Firstly, we perform a study based 

on the number of attempts and the time stamp at which 

they occurred. Secondly, we analyze the login attempts. 

Thirdly, we analyze the connection attempts via SSH 

tunnels to other hosts, and finally we analyze the origin of 

the IP addresses that interacted with the honeypot. 

Analysis of connections. We analyze the timestamp of 

the connection attempts recorded by the honeypot using 

Spanish local time (Greenwich Mean Time +1). In the 

thirty-five days of the experiment, the system captured a 

total of 830,053 connection attempts. Figure 2 represents 

the number of attempts per protocol. It can be seen that 

most of the connections were through the SSH protocol, 

reaching a total of 781,339 connection attempts. Which is 

more noticeable from this data is that the number of 



connections captured via the Telnet protocol (48,714) is 

so low, as for years it was the preferred protocol for brute-

force attacks on IoT devices. 

As for the timeline of the connection attempts 

captured, Figure 3 shows the attempts that occurred on 

each of the days of the experiment. Red represents those 

attempts that occurred between 00:00 and 08:00, yellow 

represents those that occurred between 08:00 and 16:00, 

and green represents those that occurred between 16:00 

and 00:00. Looking at the results, it can be seen that, on 

average, there were 20,000 attempts per day, with this 

figure even exceeding 30,000 on some days. In general, in 

terms of time periods, the number of attacks remains 

uniform and does not show any tendency towards a 

specific one. This indicates that most of the attacks were 

automated and not focused on out-of-office hours such as 

the 00:00 to 08:00 period.  

Figure 4 shows the connection attempts that were 

made on each day of the week. It can be seen that the 

number of attempts is very similar for each day and, 

although the peak is reached on Sunday, it does not seem 

to follow any trend.  

Analysis of login attempts. A total of 769,685 

honeypot login attempts were captured, of which 539,369 

(70.07%) succeeded in logging into the system and 

230,316 (29.93%) were unsuccessful. The successful 

logins belonged to 1,534 unique IP addresses, i.e., only 

15.45% of the unique attackers managed to access the 

system.  

Of the login attempts that occurred on the system, 

70.91% and 71.19% of the login pairs were generated 

from the list of users and passwords used by Mirai and 

from a specific dictionary of users and passwords of IoT 

devices, respectively. Table 1 shows the top 10 most used 

both users and passwords, as well as the top 10 most used 

combinations for logging into the system. In the table it 

can be seen how the attackers try to use usernames and 

passwords that are clearly commands (e.g., iptables, ping, 

sh, shell, etc.). This is due to scripts that are not able to 

capture the fact that they are facing a system that requires 

authentication and the script continues its execution, 

evidencing the lack of sophistication of some attacks. 

It can be seen that brute-force attacks on SSH and 

Telnet credentials are still one of the main methods of 

finding vulnerable systems and that the trend has 

continued since the release of Mirai, such methods 

allowing attackers to compromise systems quickly 

without investing too much effort or money in searching 

for vulnerabilities or zero-days. 

Direct TCP-IP connection analysis. We analyzed the 

connection attempts that allowed attackers to create TCP 

sessions in an SSH tunnel. In total, there were 1,278,006 

connection attempts using this SSH feature, of which 

33,804 were unique targeted hosts.It is important to note  

Figure 2: Percentage of connections by protocol. 

Figure 3: Number of connection attempts captured. Red 

represents attempts made between 00:00 and 08:00, yellow 

between 08:00 and 16:00 and green between 16:00 and 

00:00. 

Figure 5: Connection attempts via ssh direct TCP-IP. The blue 

nodes represent the hosts or addresses they attempted to connect 

to and the red nodes represent the attacker's ip address. The edge 

weight indicates the number of connections between both nodes. 

Figure 4: Number of connection attempts per day of the week. 



that all of these connection attempts were made by only 

96 attackers or bots. Figure 5 graphically shows the top 30 

hosts to which the most connection attempts were made. 

The red nodes represent the IPs of the attackers, while the 

blue nodes represent the hosts to which they tried to  

connect to. The edges represent whether there were any 

connection attempts between the attacker IP and the 

targeted node, and the thickness of the edges varies 

according to the number of times the attacker tried to 

connect to the targeted host through our SSH server. It 

should be noted that no connection was made from our 

honeypot to the outside. Also, those targeted hosts to 

which they tried to connect directly through their IP 

address were anonymised. As can be seen in the image, 

some well-known domains appear, such as Google, 

Amazon, Evernote or the Russian search engine 'ya.ru', to 

which 30.5% of the total connection attempts belong to. 

Making requests to known domains could be a way to 

check whether the redirection is working correctly and 

whether they are in a honeypot. 

In addition, we analysed the destination ports to which 

the requests were directed. Table 2 shows the top 10 ports 

and indicates that most of the requests were directed to 

connections via the Hypertext Transfer Protocol (HTTP) 

and the Hypertext Transfer Protocol Secure (HTTPS). 

The rest of the connections in the top 10 are mainly related 

to sending and receiving email and the different protocols 

used for this. Therefore, they were trying to connect to 

Simple Mail Transfer Protocol (SMTP) servers to send 

emails anonymously, something commonly used in spam 

and phishing campaigns. 

Finally, an unusual port can be observed. After 

applying Open Source INTelligence (OSINT) [24]  

techniques, we observed that this port is used by the 

servers of RuneScape [25], an online role-playing game 

that is developed by Jagex. This could be used to perform 

a Distributed Denial of Service (DDoS) attack on the 

game server or to evade bans based on IP addresses in the 

game. 

Origin of the attacks. In total, 9,926 unique IP addresses 

interacted with the system. We obtained the origin of the 

addresses by using location services and plotted them on 

a map. Figure 6 shows a heat map and the representation 

of the existing IP addresses in that geographical area. It 

can be seen that the origin of most attacks is in Asia, 

Europe and the United States, with China being the most 

common location with 28.03% of the IP addresses 

collected, followed by the United States (10.89%), France 

(5.67%), Brazil (4.49%) and South Korea (4.07%). It is 

worth noting that 51.42% of the IP addresses collected 

come from Asia, which is twice the number of IPs from 

Europe (24.20%). It is also relevant that the origin of the 

actors behind the attacks is not necessarily that location 

specifically, as they could be using some kind of proxy, 

virtual private networks (VPNs), Tor or systems that have 

been previously compromised through malware and are 

acting as bots looking for other vulnerable systems to 

spread malware. 

 

4.2 Interaction classification 
 

This section presents an analysis of the interaction of 

the different attacker sessions via the SSH and Telnet 

protocols. As discussed in Section 4.1, only 1,534 unique 

IP addresses successfully logged in. Out of that entire pool 

of IP addresses, at least 1,402, or 91.4%, executed at least 

one command. In total, 4,217 sessions were established, 

i.e., some of these IP addresses connected to the honeypot 

several times. 
To analyze the interaction, automated techniques were 

applied to classify the sessions and extract knowledge. 

Firstly, as described in Section 3.3, the commands entered 

were standardized and the most commonly used 

commands were extracted. Table 3 shows the top 10 

commands most used by attackers. In the table, we can see 

some that are quite common, such as system, shell, and 

enable, and which are normally used on some devices 

Users Total Passwords Total Pairs Total 

root 640,170 admin 411,542 root/admin 410,365 

admin 16,006 root 126,693 root/root 124,801 

enable 4,295 123456 9,781 enable/system 4,293 

sh 4,200 123 4,401 sh/shell 4,185 

test 2,927 system 4,394 ping ; sh//bin/bu.. 2,002 

user 2,596 shell 4,198 root/54321 1,888 

ping ; sh 2,002 /bin/busy… 3,549 admin/888888 1,882 

ubuntu 1,921 888888 2,771 root/8888 1,825 

postgres 1,836 5555 2,590 root/5555 1,824 

Iptables -F 1,547 password 2,095 root/111111111 1,821 

Port Total Protocol information 

443 526,670 https 

80 508,109 http 

25 176,972 smtp 

993 24,855 imaps 

587 22,627 smtp over tls 

465 5,183 smtp over tls 

43594 4,802 runescape servers 

143 3,409 imap 

26 1,988 smtp 

2525 1,952 smtp 

Table 1:Top 10 users, passwords and combinations of both most used by attackers. 

Table 2: Top 10 ports to which petitions were addressed. 



such as routers to obtain shell or more privileged 

commands. Also, the command “echo CODE >> .file”, 

which dumps binary code to a file, can be observed. The 

most striking command is the one that was repeated most 

often as it is an invalid command. Attackers use the 

command /bin/busybox followed by non-existent 

“command” names such as CORONA, TSUNAMI, 

FBOT, etc., in order to find out if the previous commands 

have been executed correctly [26]. 

Secondly, the similarity between each pair of sessions 

was calculated using the cosine similarity. In order to 

consider two similar sessions, different thresholds were 

tested, and finally we selected one with the value of 0.9, 

i.e., two sessions are similar if the cosine similarity is 

greater than 0.9. Figure 7 shows the results of clustering 

sessions based on the commands entered during the 

session. The nodes represent the sessions, and the edges 

connect two sessions if their cosine similarity exceeds the 

set threshold. It can be seen that most of the sessions are 

similar to each other and that they are mostly grouped in 

7-8 clusters, indicating that most of the connections were 

made by bots searching for vulnerable systems to 

download and install malware using similar tactics, 

techniques and procedures (TTP). 

Command Total 

/bin/busybox BUSYBOX 6,065 

sh 4,483 

shell 4,197 

system 4,171 

enable 4,171 

linuxshell 3,397 

/bin/busybox cat /bin/busybox 2,629 

>.file 2,099 

>file 1,930 

echo CODE >>.file 1,272 

Figure 6: Origin of the attacks received in the honeypot 

Figure 7: Clustering of sessions according to the commands 

entered. Each node represents a session and edges between 

two nodes indicate that the similarity is above the set 

threshold of 0.9. 

Table 3: Top 10 most used commands. 



4.3 Downloaded malware analysis 
 

This section presents the results of the analysis of the 

samples collected by the honeypot. In total, 1,578 samples 

were collected, of which 710 were unique. The unique 

samples included 590 Linux executable binary files, 35 

gzipped files, 82 bash script files and 3 perl scripts. 

Binary files. These were executable and Linkable Format 

(ELF) binary files, mainly from the 32-bit ARM 

architecture (87.46%). The rest of the samples 

corresponded to other architectures such as Intel 80386, 

Microprocessor without Interlocked Pipeline Stages 

(MIPS), etc. For the classification of the samples, the 

syscall sequences were extracted as discussed in Section 

3.3, and N-grams were extracted for each syscall sequence 

using four as the N-gram size. We use a dynamic approach 

and the extraction of syscalls since it allows analyzing and 

relating samples from other architectures (i.e., ARM, 

MIPS, Intel 80386). Figure 8 shows the results of the 

clustering of the collected samples. The nodes represent 

each of the samples and the edges join nodes that have a 

similarity greater than 80%. It can be seen that there is one 

cluster that stands out from the rest, and then there are 

small clusters or sets of connected samples.  

We applied reverse engineering techniques in 

different samples from each cluster to confirm that the 

samples were clustered correctly. The samples that are 

clustered with any other sample based on the established 

similarity threshold are the following: 

• Hajime: To this category belong 70.5% of 

the samples found, and it is this grouping 

that stands out from the rest in Figure 8. This 

sample is Hajime's downloader, a malware 

that first appeared in 2016 and spreads 

mainly via Telnet and vulnerabilities whose 

exploits it has been incorporating into its 

scanning and propagation module [27]. It is 

a botnet that communicates with its C&C 

through a decentralized network and its real 

purpose is so far unknown as it has not 

launched any denial-of-service (DoS) 

attacks [28], [29]. The binaries found all 

have the same size and are responsible for 

downloading the sample from the next phase 

[30]. Mainly, it is the same binary with only 

changes in the address and download port of 

the next stage of the malware. 

• Mirai: This is the most popular family of 

malware that attacks IoT devices. It became 

famous because it generated the largest 

DDoS attack using IoT devices [31]. Its 

source code was leaked in 2016 and since 

then multiple Mirai variants have appeared. 

It accounts for 9.83% of the total binary 

files. 

• Gafgyt: This accounts for 6.44% of the 

executable files collected. It is malware 

whose source code was leaked in 2015 and, 

like with Mirai, there are many variants of 

this malware family. Among its main 

features is the ability to perform various 

DDoS attacks [32]. 

• Dofloo: This is malware that allows DDoS 

attacks and the loading of cryptocurrency 

miners [33], [34], and accounts for 1.52% of 

the samples. 

• Xorddos: This is malware that affects 

Linux-type devices and allows different 

types of DDoS attacks [35]. This family 

accounts for 2.54% of the samples. 

• Others: The remaining samples, which 

were not related to any other sample on the 

basis of the similarity index, belong to this 

category. 

Bash-script. These were script files downloaded in the 

sessions and designed to download malware for different 

architectures and execute it. All scripts work in a similar 

way: 1) they move to a directory where the user has 

permissions; 2) they download the malware for different 

architectures via wget, tftp or curl; 3) they give the 

downloaded file execution permissions; and 4) they 

execute the file with or without arguments. All files 

perform the same task and differ only in the IP addresses 

they try to connect to, the filename and the architectures 

supported by the malware. 

Perl-script. The downloaded scripts were Internet Relay 

Chat (IRC) bots written in Perl with command execution 

capabilities. All three scripts were based on source code 

that is publicly available on the Internet, with two of them 

even having the same comments as the versions they were 

based on [36], [37]. 

Compressed files. These were files in “tar.gz” format that 

had a hidden folder with the name rsync. The sum of all 

the unzipped files was 979, 106 of which were unique. 

There were 34 shared libraries, 31 executable files and 40 

script files. In general, they were different versions of 

Figure 8: Clustering of the samples captured in the honeypot. 

Each node is a sample and an edge connects two nodes if they 

have a similarity greater than 80%. 



malware designed to mine cryptocurrencies. Such botnets 

provide cybercriminals with a network for distributed 

mining and financial gain, either by saving electricity bills 

or by obtaining cryptocurrencies [38]. Each compressed 

file contains several scripts that are responsible for finding 

and stopping the execution of any other mining malware 

and initiating the execution of its own malware. They also 

carry different versions of the executable used to perform 

the mining as well as the necessary libraries for ARM, x86 

and x86-64 architectures. 

 

5 Limitations and future work 
 

This study is focused on Telnet and SSH services and 

the actions that attackers take once they take control. In 

view of the results obtained, it can be seen that brute force 

attacks on these services continue to be one of the 

preferred methods to take control of devices and infect 

them. However, in addition to brute force, attackers also 

exploit known vulnerabilities in other services to gain 

access to devices (e.g., HTTP, HNAP, or UPnP). 

Not only conventional protocols are targeted by 

cybercriminals, IoT-centered ones such as MQTT are as 

well. The study of these types of protocols opens an 

interesting line of research that, although is out of the 

scope of our work, can lead to gaining additional 

knowledge on how cybercriminals behave when operating 

in the IoT. 

Additionally, the use of search engines in the early 

phases of the fingerprinting technique is another 

interesting aspect in which to delve into. This is of added 

interest when working with honeypots, as making them 

accessible by these types of tools can lead to 

cybercriminals suspecting that the IoT system that is 

behind the service is not a real one. 

 

6 Conclusions 
In this study, a high-interaction honeypot has been 

deployed for a period of one month, mimicking the 

behaviour of an IoT device. The data captured have been 

analysed yielding valuable insight of the actions carried 

out by the attackers once the Telnet and SSH services had 

been compromised. Firstly, a statistical analysis was 

performed based on connection attempts, authentication 

attempts, IP addresses and attack attempts using SSH port 

forwarding. Then, we analysed the interaction of the 

attackers with the honeypot and classified the sessions 

established. Finally, we analysed the different files that 

were downloaded on our honeypot system by classifying 

the ELF format binary files. 

During this experiment, a total of 830,053 connection 

attempts were made to the system, the majority of them, 

namely 781,339, through the SSH protocol, with the rest 

of them made via Telnet. 769,685 times these connections 

were translated into login attempts, with 15.45% of them 

succeeding. In these sessions, 1,578 malicious samples 

were downloaded, and, after clustering them, it was 

determined that 70.5% of them belonged to the Hajime 

downloader malware family. However, others such as 

Mirai, Gafgyt, Dofloo and Xorddos were detected. With 

respect to the origin of the attacks, 9,926 unique IP 

addresses interacted with the system, with the top three 

attacking countries being China, the United Stated and 

France, with 28.03%, 10.89%, and 5.67% of connections 

respectively. 

The results show that most of the sessions established 

were conducted in an automated manner by bots searching 

for brute-force vulnerable servers on which to install and 

execute their malware. With respect to the variants found, 

it can be concluded that there are old malware families 

that are still operating and actively look for new systems 

to add to their botnet, as well as others that aim to use 

these devices for cryptocurrency mining. 

With this work we have been able to gain a better 

understanding of the actions that attackers take when 

targeting vulnerable services, thus providing the research 

community with valuable knowledge on the behaviour of 

cybercriminals in the IoT, which is one of the main issues 

currently under study due to their importance for users and 

their data. 
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