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Abstract—Online underground forums are used by cybercrim-
inals to share information and knowledge related to malicious
activities. Participants exchange “Indicators of Compromise”
(IoCs) within the discussions. These may include Hashes, Do-
mains, URLs, or IPs with potential malicious intent. While Open
Source Intelligence (OSINT) eventually identifies these malicious
IoCs, it may take an extensive amount of time, sometimes up
to years, before they are identified as threats. However, the
context in which these IoCs appear, and the information provided
through the posts’ and authors’ context can already offer
valuable insights about their malicious nature. Unfortunately,
the large amount of unstructured noisy forum data presents a
hurdle for automation. In this paper, we address the challenge
of automatically distinguishing between posts containing IoCs
posing a threat and those being harmless. We design a learning
pipeline that does not use features derived from IoCs, enabling a
timely identification of novel threats. We operate over a temporal
representation of forum data and offer valuable insights into the
optimal time window that tracks concept drift. We also study
which types of IoCs are harder to predict (e.g., IPs) and how
transfer learning from other types can help to improve their
identification. We conduct our analysis on a prominent hacking
forum, spanning over 18 years of data, and find that our model
can detect IoCs ≈490 days before they appear in OSINT.

Index Terms—Cybercrime, Cyber-Threat Intelligence, Indica-
tor of Compromise, Underground Forums

I. INTRODUCTION

In the dynamic landscape of cybersecurity, the continuous
improvements in offensive techniques and tactics require a
corresponding evolution of cyber defenses. Many security
defenses rely on forensic traces, commonly referred to as
Indicators of Compromise (IoCs). These traces play a crucial
role for organizations leveraging Open Source Intelligence
(OSINT) in detecting signs of potential compromise. The
Cyber Threat Intelligence (CTI) community regularly shares
IoCs to gain insight into potential threats [1].

Identifying IoCs promptly is crucial for appropriate threat
management and incident response, as it allows corporations
to proactively block attacks and identify breaches. However,
the timing when these IoCs are included in OSINT feeds is
unclear. Unfortunately, blocklists are ineffective if they do not
offer timely intelligence [2], and there can be a significant
delay between the time a malicious service or product is
detected in the wild and when the corresponding IoCs are
added to OSINT repositories [3]. This is an inherent limitation
of relying on OSINT data.

Online underground forums play an important role for
cyber-criminals, as they enable the exchange of knowledge
and information, as well as the trade of illicit goods and
services [4], [5] — including the newest knowledge and
cybersecurity exploitation tools [6]–[8]. This gives interesting
opportunities for security practitioners and law enforcement
to monitor and understand modern threats, as well as their
evolution and development [9], [10]. As miscreants engage in
these forums, in many cases, they advertise and share IoCs
in the works, i.e., products or services (e.g., URLs of shops)
that are in the process of being monetized [11]. To gain
confidence and increase marketing, they often show proof that
their product is functional and safe from OSINT detection [1],
(e.g., sharing Hashes to show a malware is undetected [12]),
before actually trading them. Popular IoCs exchanged (either
related to compromised or malicious devices) include IP
addresses, Fully Qualified Domain Names (FQDN), URLs [2],
or file Hashes (e.g. SHA1, SHA256) [13]. These are widely
used by the AntiVirus (AV) and the OSINT industries to
identify threats [14]. However, not all discussions on under-
ground forums relate to actionable threats. There are also
posts sharing harmless IPs, FQDN, URLs, and Hashes (e.g.,
actors discussing VPN services, identifying cloud providers,
or sharing IP addresses of law enforcement to build deny lists).
In this paper, we use the term artifacts to refer to all these
elements regardless of whether they have malicious, or benign
attributes. Instead, we refer to the term IoC when an artifact is
malicious [13]. While previous efforts focus on the extraction
of artifacts from textual content [13], [15], extracting these
is not sufficient and requires further methods to distinguish
between actual IoCs and benign artifacts.

In this paper, we describe a methodology to detect forum
posts that are trading or advertising malicious products and
services. Our system learns about potential IoCs in a threat-
less, zero-shot manner, e.g., it does not require downloading
malware or visiting malicious pages. We prove that our method
is generic and adapts to detect different types of IoCs. It also
serves as an early-warning system, allowing the detection of
malicious content as soon as an IoC first appears in those
forums. We note that our system can be seen as an initial
scanning pipeline for malicious posts that could undergo
further scrutiny.

For our work, we consider four different types of IoCs:



Hashes (MD5, SHA1, and SHA256), IPs, URLs and FQDN.
We conduct our research on a prominent multilingual English-
Russian hacking forum, whereby the historical data collected
spans ≈18 years (2005 to 2023). We focus on actionable
IoCs that can eventually be flagged as malicious by prominent
OSINT platforms (e.g., VirusTotal [14]) and incorporated into
blocklists for reputation-based detection systems [3]. OSINT
can not inform about the most recent IoCs unless they have
been observed (and reported) in a cyber incident. Therefore,
we address this problem by developing a method that detects
IoCs as early as they are advertised in underground forums
without the need to conduct an exhaustive analysis of the
artifact itself (i.e., malware sample, exploit, etc.). In our
dataset, we find hackers discussing IoCs that remained under
the radar of OSINT for years, which confirms the importance
of investigating these online communities to gather CTI [7],
[9], [11], [16].

We consider a real-world scenario, where we only rely on
the information (features and labels) available at the time an
artifact is posted to avoid temporal and spatial snooping [17].
Through extensive experimental work, we compare different
automated approaches to deliver an accurate detection. To pro-
vide a generalizable system, we conduct an ablation study over
the different types of IoCs. We see how the context in which
certain types of IoCs are posted can be leveraged to identify
others more accurately. Our findings can be summarized into
the following points:

1) By investigating state-of-the-art NLP techniques, we ob-
tain an F1-score of ≈0.8, thus showing the importance
of considering context obtained ‘in-the-wild’ when pre-
dicting IoCs.

2) Our classifier can detect posts containing IoCs that take
on average ≈490 days to be discovered by OSINT.

3) We show how knowledge transfer facilitates the identifi-
cation of more complex IoC types and remains resilient to
noisy IoCs. Furthermore, we demonstrate how to predict
types of IoCs that are not part of the training ground
truth.

We motivate our work and identify three requirements for
IoC detection in underground forums in §II. Then we present
our research questions and methodology for a context-based
identification of IoCs in §III, which we evaluate in §IV. We
finally validate our IoC detection in §V, and showcase our
findings with a case study in §VI.

II. MOTIVATION

Our main motivation is to build a system that detects
posts containing IoCs published in online forums. Next, we
identify three requirements for such a system and analyze the
shortcomings of existing works in the literature.
• Requirement R1. Need for Threat-less Zero-Shot Learn-

ing. Investigating and analyzing an IoC is a resource-
intensive task, requiring experts with specialized skills to
react to a dynamic and fast-evolving threat landscape [18].
While threat actors exchange IoCs such as malware Hashes
or IP addresses on underground forums, they also discuss

harmless artifacts, making it even more challenging to
identify genuine threats. We hypothesize that information
about the malicious nature of the IoC can be inferred from
the context of the post where it appears.

• Requirement R2. Need for an Early Warning System.
The detection system must provide timely intelligence on
IoCs. We hypothesize that IoCs are published in forums
before they become publicly known through regular OSINT
sources, as reported in previous works [1], [19]. We there-
fore stress the need for a system that can detect novel threats
that appear referenced in forums.

• Requirement R3. Need for a Generalizable Approach.
We desire a generalizable IoC detection method. Such a
method would enable the integration of new IoC types and
facilitate transfer learning across them. Transfer learning can
improve the detection of rare IoCs or those with limited
historical data.

Synthesis of Existing Work. In the context of the three
requirements above, we observe prior work that partially
addresses them, as shown in Table I. First, we see a large body
of work offering detection methods based on very specific
IoCs posted in comments (R1), mostly targeting malicious
URLs [21], [22], [24] — very useful when dealing with
SPAM or Phishing. One main limitation of these works is
that they use features derived from the artifact itself. This
can easily be evaded, as we have seen in the case of URLs
through the use of shorteners. Instead, works such as in [1]
relying on the context are designed to extract artifacts in
general, but lack a solid validation of the maliciousness of
such artifacts. Second, other related work explores extracting
IoCs from unstructured text, including online forums [20], [23]
(R2). However, they are limited in the timely identification of
novel threats. In particular, works relying on features from the
artifact itself such as [20]–[24] are restricted to detecting IoCs
of known threats. Furthermore, for an effective early warning
system, time dependencies can not be ignored in the analysis,
as otherwise, it can lead to temporal snooping [17], [30].
However, we find existing works have not considered this.
Third, authors in [28] and [29] present a generalizable IoC
detection method (R3). Unfortunately, they rely on previous
human action, and thus methods derived from this approach
are not systematic [28] or the artifact classification relies on
external sources [29].

Table I
EXISTING WORK AND REQUIREMENT FULFILLMENT.

 = FULFILLED, G#= PARTLY FULFILLED, #= NOT FULFILLED.

R1 R2 R3 Year Comments
[20]  G# # 2015 Using URL features.
[21]  G# # 2018 Using URL features.
[22] # G# # 2020 Using URL string and connection features.
[23] # G# # 2021 Using URL string and connection features.
[24]  G# # 2022 Using URL features.
[25]  G# # 2017 Flexibility for other types of IoCs.
[19]  G# # 2019 Flexibility for other types of IoCs. Based on [25].
[26]  G# # 2018 Flexibility for other IoCs. Based on [19], [25].
[27]  G# # 2019 Flexibility for other IoCs. Based on [19], [25].
[28]  #  2017 Relies on previous human action (Twitter post).
[29] G# G#  2021 External sources for classification. Latency issues [3].
[1] G#  # 2024 Narrows the focus to appraisal posts.



In addition to the shortcomings discussed, we note that prior
work does not address all three requirements at once. When
considering textual features previous works rely on classical
NLP methods (e.g., TF-IDF for word counts or word embed-
dings) [1], [19], [20], [25]–[27]. In this paper, we explore
the potential of state-of-the-art methods such as sentence
transformers, using time-invariant features, and apply them to
a prominent underground forum, to address all requirements.

Experimental Analysis of Requirements. We next describe
and compare the closest and most recent relevant related
works. First, we look at works from Gharibshah et al. [19],
[25] which are used as the basis of other works such as
[26], [27]. Although these works only investigate IPs, they
propose a methodology that relies on post-textual context —
partially meeting Req. 1 and Req. 2 — and could be applied
to other types of IoCs given the right experimental setting
— potentially meeting Req. 3 as well. Thus we conduct a
preliminary experiment applying their proposed approach to
other types of IoCs, i.e., to see whether it meets Req. 3.

Second, we choose the work from Li et al. [1]. The authors
show how to extract IoCs from a special type of post used for
‘Appraisals.’1 They use contextual features to extract the IoCs
(potentially meeting Req. 1), and also show that the collected
IoCs are posted before they are made public in OSINT sources
(meeting Req. 2). Since they focus on appraisal posts, we
examine whether their approach can be generalized to the
entire forum.
Detecting IPs in underground forums. Gharibshah et al. devel-
oped a method to extract and classify malicious IP addresses
from underground forums [19], [25]. Since the method does
not investigate the artifacts themselves, it provides flexibility
to be applied to other types of IoCs as well. Therefore, we
investigate if we can use this concept to answer our problem.
As the work by Gharibshah et al. does not offer an open
implementation of their method, we reproduce their work by
conducting the following steps:

1) We label posts with VirusTotal [14] and exclude unknown
ones (we use the dataset as detailed in §IV-B1 and
§IV-B2).

2) We mask the artifacts, remove stopwords, lowercase and
tokenize the text.

3) As features we consider: 100 Post-Text features generated
through TF-IDF and information gain; 11 author-behavior
features; latent-post similarities by applying unsupervised
clustering to the posts.

4) We then apply classification through Logistic Regression,
under two different settings. (a) A random test and train
set; (b) Imitating a real-world scenario and considering
time dependencies: when predicting posts of year y, we
use the information available in years < y as in our work
(cf. §III-D2).

When randomly splitting the dataset we report an F1-score
of 0.5. When considering a timeline evaluation, we report an

1A feedback mechanism where an appraiser receives a free copy of a
product or service and writes a post with an initial assessment.

Table II
APPRAISAL POSTS IN OUR DATASET, USING THE METHOD IN [1] TO

DISTINGUISH BETWEEN malicious AND not-malicious.

Others Appraisals
not-malicious 1,063,076 (99.97%) 353 (0.033%)

malicious 41,021 (99.74%) 108 (0.263%)

average F1-score over all years of 0.4. We therefore conclude
that the method does not provide sufficient confidence to
answer our problem.

CTI in Appraisal Posts. Li et al. [1] measured the ecosystem of
appraisals in underground forums. In their work, they collect
IoCs from the appraisals using contextual features. To this end,
they conduct a literature review to get a taxonomy of IoCs
that can be extracted from forums, including malware and
malicious websites. Then, they leverage regular expressions
and a custom ML classifier to extract IoCs related to such
cybercriminal activities. They validated the model over a
reduced sample of 50 posts per category, whereas in our work
we rely on well-established ground truth from external OSINT
sources. Additionally, their approach is not generalizable and
thus does not meet Req. 3. To probe this, we use the same
approach the authors did to check for the prevalence of
potential IoCs outside appraisal posts. Specifically, we apply
the same keyword search as their work but to our complete
dataset, which includes posts that contain benign artifacts
and also IoCs. Table II shows a high proportion of posts
in our dataset (99.74%) contain malicious IoCs and do not
contain the keywords to detect appraisals, and thus would be
undetected by the approach from Li et al. [1]. Furthermore,
the low proportion of appraisals in our dataset (0.03% of not-
malicious and 0.3% of malicious posts) indicate that an ML
approach for classification would be challenging, hindering the
distinction between IoCs and benign artifacts. We conclude
that their method, while providing an early warning system
(Req. 2), does not meet Req. 3, and partially fails Req. 1.

III. CONTEXT-BASED IDENTIFICATION

To predict whether underground forum posts contain IoCs,
we set out to answer the following Research Questions (RQs)
designed to overcome the limitations of previous methods. In
particular, we devise an RQ per requirement:

RQ1 Can we leverage the semantic meaning and metadata of
a post to predict if an IoC is shared in that post? In other
words, can we distinguish between posts with malicious
IoCs and those with regular artifacts?

RQ2 Can underground forums offer a key advantage in the
identification of novel malicious IoCs when compared to
regular OSINT sources?

RQ3 Can our learning method apply to different types of IoCs?
Even when a type of IoC is not present in the training set,
can we still distinguish between posts sharing malicious
and benign artifacts?

To answer these questions, we design a learning pipeline
depicted in Figure 1. Our methodology has four main steps:
collection of forum data (§III-A), identification of ground truth
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Figure 1. An overview of the methodology.

(§III-B) and features (§III-C), and the classification of IoCs
(§III-D). We evaluate the methodology in §IV, and validate
the requirement we have established in §V.
Overview: We extract artifacts from hacking forums, which
may contain posts in different languages, and label them with
OSINT. We build our ground truth at the post level considering
different confidence thresholds. We extract posts’ context and
content information and use it to train our classifier with
sentence embeddings as features. We investigate the optimal
time window of historical data. We next describe in detail the
methods that underpin our approach.

A. Collection of Underground Forum Data

Underground forums are known for their strict access re-
strictions, which hinders data crawling [11], [16]. To sys-
tematically collect data, crawlers require specialized tech-
niques [31], [32]. In particular, the crawler first requires access
to the forum, typically in the form of valid login credentials
or access tokens. Stealthy data collection methods are crucial
to prevent the account from being banned. Our method, influ-
enced by CARONTE [32], mimics human navigation behavior,
both in terms of connection frequency and data request rates.
Whereas CARONTE concentrates on ‘interesting’ areas of the
forum, we collect the whole content of the forum, presenting
a more complex challenge. As we only have access to one
account in our forum, we can not run multiple crawlers in
parallel which affects the crawling speed. We obtained Ethics
approval and discuss the ethical considerations in Appendix A.
After collecting the data, we translate non-English text to
English through a state-of-the-art multilingual neural machine
translation tool [33].

B. Data Labeling

Forum posts contain non-textual elements like IPs, URLs,
FQDN, etc. [1]. We use the term artifacts to refer to all
these elements regardless of whether they have malicious,
benign, or unknown attributes. Instead, we refer to the term
“Indicator of Compromise” (IoC) when an artifact has a ma-
licious attribute [13] (e.g., URLs of C&C servers, or malware
Hashes). Prior work often associates IoCs with a type of
artifact regardless of whether they are malicious or not [13],
[15]. However, our work deals with data that may contain
malicious artifacts (IoCs) as well as innocuous artifacts (e.g.,
sharing IPs of law enforcement, for hackers to add them
to their blocklists). Hence, additional analysis is required to
determine if an observed artifact is malicious.

As our end goal is to distinguish posts containing IoCs from
those that do not, we label our dataset at the post level. We first
extract the artifacts using [13], and then rely on OSINT (Virus-
Total [14]) to determine whether those artifacts are malicious,

benign, or unknown. This way, we collect ground truth from
various AV tools, which we leverage to understand the balance
between the number of engines (namely, votes) that identified
an artifact as malicious and not malicious. A common practice
is to provide a threshold on how many engines need to agree
for an artifact to be considered an IoC [34], [35]. Next, we
define our labeling strategy to characterize IoCs and posts.
Characterizing IoCs. To characterize our dataset we define
a set A(·) = {a1, a2, ...an} representing the list of n artifacts
extracted from our dataset. We define a threshold τ that
determines the minimum number of OSINT votes for us
to consider an artifact malicious. We obtain the set Aτ(·),
containing the union of all the labeled IoCs that meet our
threshold τ and all non-malicious artifacts. Concretely, given
the number of malicious votes n for an artifact a, we get its
corresponding label La as follows:

La =

{
maliciousτ , if n ≥ τ ,
not-malicious, if n = 0,
excluded, if (τ ! = 1) & (τ>n ≥ 1 ).

(1)

Accordingly, we define an IoC as any artifact a with a
malicious label (La = maliciousτ ), i.e., a malicious artifact.
This means that for τ = 1 we label all artifacts that at least
have one engine classifying the element as malicious. For
τ>1 we exclude artifacts with less malicious votes than τ .
Thus, Aτ(·) = {a1, ...ai, ...aj} ∀ Lai = maliciousτ and
Laj = not-malicious. We abuse notation and refer to Aτ
instead of Aτ(·) to describe the set of artifacts with maliciousτ
and not-malicious labels.
Characterizing Posts. We label posts by looking at the labels
of the artifacts that they contain. Again, given a threshold τ
of malicious votes, we obtain the set PMτ which includes all
the posts that contain at least one IoC detected by τ engines
or more. More formally, let A(p) = {a1, a2, ...am} be the list
of m artifacts extracted from a post p (with m ≥ 1), and
L(p) = {La1 , La2 , ..., Lam} their corresponding labels. We
label a post p as follows:

Lp =

{
malicious, if ∃ ai ∈A(p) | Lai = maliciousτ
not-malicious, if ∀ ai ∈A(p)| Lai = not-malicious
“excluded”, otherwise

(2)

We exclude posts containing both not-malicious and un-
known artifacts, to prevent noise in the datasets due to the
uncertain status for which there is no OSINT.

C. Feature Engineering & Extraction

In this step, we extract metadata-based features (e.g., au-
thor’s reputation, timestamps), text-based features (number of
characters in a post), as well as the actual textual content of
the posts. We process textual content as sentence embeddings,
which we use later to identify if a post contains malicious



Table III
A SUMMARY OF FEATURES WE USE FOR CLASSIFICATION.

Feature Type Feature Description

Post-content
Features

1) Post content sentence embeddings
2) Thread headline sentence embeddings
3) Thread’s first post sentence embeddings

Text-based
Features

4) Total number of characters in a post
5) Number of artifacts in a post

Metadata-based
Features

6) Author’s community reputation
7) Author’s forum rank based on their activity
8) Author’s role
9) Author’s total number of posts
10) Number of days between author
registration and post time

IoCs. Simultaneously, this provides flexibility as the same
method can be used to investigate other types of IoCs (e.g.,
malicious Bitcoin addresses or fake accounts).

1) Feature Engineering: A strong source of information to
understand if a post contains an IoC is the post content itself.
For example, the post “Best Quality Call Service!. Calls to any
phone in the world, both with and without number spoofing”
already indicates malicious activity from the text content.
Therefore, our model leverages this type of information as
the basis of the prediction. Unfortunately, forum discussions
contain noisy unstructured text, including shortcuts, typos, as
well as dark keywords [36]–[38] which are benign-looking
words, but they might change their meaning (e.g., “rat” means
“Remote Access Trojan”) in the context of malicious activity.
Sentence transformers are more resistant to this noise as
words are considered in the context of the sentence, and are
preferable to word-embeddings or word-count methods [39],
[40].

To process posts, we mask artifacts, clean the text from spe-
cial characters, and put it in lowercase. Then, we convert the
text into sentence embeddings with our sentence-transformer
model (i.e., “all-mpnet-base-v2”) which is suitable for our
forum dataset, as it was trained with more than 1 billion pairs
of sentences from different online media, including Reddit or
StackExchange [41]. Then, we reduce the high-dimensional
sentence embedding vector to a lower-dimensional space. In
our implementation, we use UMAP, an algorithm based on
manifold learning to increase computational efficiency, and an
embedding vector of 10 dimensions [42].

2) Feature Extraction: Consequently, for feature extraction,
we consider Post-content, Text-based, and Metadata-based
features, that are available directly at the time of the post
creation. Table III details the type of features we use. The post-
content features represent the content of the post, the thread
headline, and the first post in the thread interpreted as sentence
embeddings. By including the thread headline and the first
post, we embed the context of the post together with all other
replies that may be devoid of meaningful background (e.g.,
“try this: {IoC}.”). The Text-based features and Metadata-
based features offer further information to capture the structure
of the post and the background of the author as used by prior
work [19], [25].

For categorical features, we use a one-hot encoding. Specif-
ically, Author Rank, and Author Role are mapped to an
integer in an n-dimensional space, whereby n is the number

of different classes for each feature. The remaining features
are directly available as integer values. Finally, we conduct
a feature importance analysis to identify the key features for
predicting if a post contains an IoC.

D. Context-based Classification

We assess different classification algorithms to build the
model that better addresses our problem. We try three different
learning strategies to broaden the performance of our system.
The first strategy plays with different confidence thresholds
(τ ) used for the labeling of artifacts as malicious. The second
strategy considers time dependencies for training, investigating
the optimal time window for an effective prediction. Third, we
try different methods to balance the training data. We describe
next these strategies in detail, which we evaluate in §IV, and
finally describe the learning strategy we use for IoC Stalker
to answer our RQs in §V.

1) Confidence Selection: As explained before, we set a
threshold τ to determine the minimum number of malicious
votes required for an artifact to be labeled as malicious.
Intuitively, this threshold determines the confidence we have
in OSINT sources: the lower the threshold, the higher the
confidence in individual AV predictions. We thus introduce
this threshold to ensure a reliable ground truth [43]. While
it is commonplace to set this threshold to five when using
OSINT to label malware [35], it remains unclear whether we
can adopt more conservative thresholds for artifacts. This step
of the methodology aims to select the value of τ that best
adjusts to the correct identification of IoCs in underground
forums. In our work, we compare τ = 1 and τ = 5. While the
former offers a larger opportunity to train over stealthy IoCs,
the latter is more conservative and has the potential to deliver
a more reliable ground truth.

2) Time Dependencies for Training: When building training
datasets, we take into consideration the timeline of when data
appears in the forum to avoid temporal snooping [17], [30]. We
therefore do not randomly generate test and training sets, but
when predicting a post from a given year y, we only consider
data from previous years (< y) for training. Considering
these dependencies, we investigate different timeframes for
training the classifier. In particular, we aim to determine the
most suitable time window that hinders concept drift [44]–
[46]. When predicting IoCs for year y, we seek to determine
how many previous years y − t should ideally be considered
for training. We refer to t as timeframe in what follows. To
answer this question we run the classifier on each sub-dataset
and do this analysis for the last 10 years, meaning, we make
predictions for IoCs discussed in year y and compare the
classification results for different timelines and sub-datasets.

3) Balancing the Training Set: We follow best practices so
that the classes within our training set are well balanced [47],
and keep a constant ratio of malicious IoCs to benign artifacts.
To respect time dependencies, we balance the training set as
time progresses. When the ratio is imbalanced, we oversample
data points misclassified in a previous timeframe t − 1 as
OSINT becomes available for those samples in t. We use



the following oversampling strategies: 1) Random oversam-
pling [48]; 2) Oversampling misclassified false negatives,
meaning IoCs falsely classified as goodware; 3) Oversampling
all misclassified artifacts; 4) Combining random oversampling
and oversampling of misclassified malicious IoCs.

4) Learning Strategies: For learning how to detect mali-
cious artifacts, we design the following training strategies:
Step 1) Everything: we use all IoC types for testing and
training, using our labeled dataset with a temporal training-
testing split; Step 2) <IoC_name>: we train and test us-
ing a single IoC type, using the same split as before but
filtering out all other IoCs (namely ablation study); Step 3)
<IoC_name>_excluded: we leave one IoC type out from
the training set (i.e., <IoC name>), but include it in the
testing; Step 4) <IoC_name>_only we train only with one
type of IoC and test in all the others.

We use Step 1 to evaluate the general performance of IoC
Stalker, Step 2 to assess the contribution of individual IoC
types to the overall performance, and Steps 3 and 4 to evaluate
the model under an open-world assumption to assess potential
knowledge transfer across types. The performance we get from
the former two steps may be seen as baselines to interpret the
results in the latter steps. We note that the test set is permanent
for all cases, as long as the IoC is part of the set of artifacts
under evaluation. This means that the test set remains the exact
same for Steps 1, 3, and 4. Naturally, the test set we use in
Step 2 is tailored to the type of IoC being evaluated. We use
the labeling strategy defined in §III-B for all cases. Artifacts
are masked during the pre-processing stage (see §III-C1) but
note that the implementation of our extraction process only
captures popular IoC types and it may not be perfect. IoCs
not captured are processed as part of the text.

IV. EVALUATION

In this section, we implement and evaluate the different
steps of the methodology. We later assess the performance
of our system over our requirements in §V.

A. Collection of Forum Data

We collect data from an English-Russian hacking under-
ground forum. The data collection spans over 18 years, thereby
containing about ≈1.1M posts and ≈156k threads in 53
sub-forums with attentive daily activity. According to the
forum website’s statistics, there are ≈85k registered members,
whereby our dataset registers ≈34k members who posted at
least once over our data collection period.

B. Artifact Extraction and Characterization

We use iocsearcher [13] to extract artifacts in our dataset.
In this work, we consider four popular artifacts used in the
realm of Threat Intelligence, i.e.: domain names (FQDN), IPs,
URLs and Hashes. We find 885,417 artifacts, out of which we
find FQDN (399,320), IPs (101,573), and URLs (327,325), as
well as Hashes: MD5 (38,185), SHA1 (11,421) and SHA256
(7,593). Note that any other type of artifact is processed
as part of the text. After extracting the artifacts, we query

them on VirusTotal [14] between April and May 2023 and
obtain reports for 503,489 artifacts (56.8%). A total of 381,928
artifacts (43.2%) are unknown and therefore excluded from
our analysis.

Figure 2 shows the distribution of artifacts per thread and
per post. Subfigures (a) and (b) show that ≈85% of threads
and ≈95% of posts have fewer than 10 artifacts. Threads
contain on average 12.4, and maximum of 142,591 artifacts,
while posts contain on average 5, and max. 10,174 artifacts.
In subfigure (c) we observe that IPs and Hashes are less
spread out over the forum when compared to FQDN and
URLs (the former two appear across 3.5k threads and 3.8k
threads respectively and the latter two over 70.3k threads
and 38.8k threads). Comparing subfigures (d) and (c), we
observe that the prevalence of artifacts known to OSINT
follows a similar distribution for the different types of artifacts
(except for URLs, where there is significantly less OSINT
intelligence available). This high prevalence of ground truth
for the artifacts (as of May 2023) allows us to characterize
our dataset. Specifically, we apply the labeling rules defined
in our methodology using thresholds τ = 1 and τ = 5. As a
result, we obtain two sets of artifacts A1 and A5 and two sets
of posts P1 and P5, which we use to characterize the IoCs
and posts.

1) Characterizing IoCs: We are interested in characterizing
A1 and A5 to understand confidence threshold’s impact on
our dataset. Recall that Aτ is the union between maliciousτ
and not-malicious. We find 439,586 not-malicious and 63,903
malicious1 IoCs, among which are 3,781 malicious5 IoCs.
Figure 3 shows the breakdown of artifacts per type. Our dataset
predominantly yields FQDN, IPs, and URLs, with a substantial
presence of hashes (we study the timeline distribution of
artifacts in Appendix B-A). We see a good balance between
malicious1 and not-malicious.

VirusTotal provides a “first submission date” date for
Hashes and URLs and a “last analysis date” date for FQDN
and IPs. We present in Figure 4 the time difference (in days)
between the date when a Hash or URL was posted in the
forum and the date when it was first submitted to VirusTotal
for Hashes and URLs. We only represent positive values, i.e.:
Hashes and URLs that were unknown to VirusTotal at the
time of appearing in the forum. We see that it takes about 1.5
years for AVs to detect up to 50% of the IoCs, and over 5
years to detect 80% of the IoCs. This long period serves as
a strong motivation for our work. However, due to this long
submission period, we see limited availability of scan results
for artifacts in the year 2023 and we exclude these posts from
what follows.

2) Characterizing Posts: Recall that the set PMτ includes
all posts that contain IoCs detected by ≥ τ . Looking at PM1
and PM5, we see 41,129 posts containing malicious1 IoCs,
whereby 2,327 out of those contain malicious5 IoCs. We also
see 77,449 containing not-malicious IoCs. Figure 5 displays
the number of malicious5, malicious1, and not-malicious posts
per year. We see an initial increase of malicious5 and not not-
malicious posts in the forums creation phase and a slight peak
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Figure 2. A Cumulative Distribution (CD) of how artifacts are distributed in threads and posts in the forum.
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Figure 3. An overview of all artifacts extracted from our dataset, labeled as
malicious1, malicious5, not-malicious or unknown (“not scanned).”

in the years 2016 - 2018. Note that the drop towards most
recent years might be due to ‘Unknown’ artifacts that have
not made it to VirusTotal just yet, due to the long submission
time effect discussed earlier in §IV-B1. We exclude those posts
that contain both unknown and not-malicious artifacts at the
same time, to avoid potential noise that may stem from the
unknown.

C. Classification

We next evaluate our classification choices (c.f., §III-D).
1) Algorithm Selection: For our analysis, we test different

classifiers on PM1 to evaluate the most suitable one to address
our problem, including: ”Random Forest” (RF), “Logistic
Regression” (LR), “Gradient Boosting” (GB), “MLPClassi-
fier” (MC), “GausianNB” (GNB) and “LinearSVC” (SVC).
We consider time dependencies (c.f., §III-D2) over 5 years,
y = [2022, 2021, 2020, 2019, 2018], comparing the mean F1-
score. Details of the analysis are shown in Appendix B-B. Our
selected feature set can reasonably predict if a post contains a
malicious1 IoC, achieving the best results with RF (F1-score
of 0.739).

A key observation here is that some types of IoCs are harder
to predict individually. Predicting Hashes individually provides
slightly better results (F1-score 0.791). While GB shows the
best results for URLs (F1-score 0.595), RF is comparably good
(F1-score 0.592). The predictions for IPs and FQDN are sig-
nificantly harder with LR only achieving an F1-score of 0.428
for IPs and an F1-score of 0.382 for FQDN. This could be due
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Figure 4. Time elapsed between the discussion date (post timestamp) and the
first submission date (VirusTotal) of URLs and Hashes.
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Figure 5. Visualizing the annual distribution of malicious posts of PM1,
malicious posts of PM5, or not-malicious posts.

to different reasons. We find discussions mentioning Hashes
usually provide a good explanatory context, which benefits the
knowledge gained through embeddings. Furthermore, URLs
and Hashes are not as volatile regarding their malicious status,
as FQDN and IPs. We discuss this further in §VII.

2) Evaluation of Training Data Fine-Tuning: In this sec-
tion, we apply three strategies described in §III-D to enhance
the training set. Our goal is to measure the effect of each
strategy on the training process and assess how well they
enhance our model’s predictions.

Confidence selection for training. We use the best-
performing algorithm, Random Forest, to build two classifiers:
C1 trained on set PM1, and C5 trained on set PM5. While
the classifiers are trained on different sets, we use the same
set PM1 for testing to offer a fair evaluation and comparable
results, aligned with existing works, where a single malicious
vote for an artifact makes it suspicious [49].

We run both C1 and C5 on years y = [2013−2022] (in total,
88,314 posts), using the samples from < y as training data to
predict artifacts of year y. Figure 6 shows the classification
performance focusing on the predictions for “malicious” as a
positive class. We see good overall results for classifier C1
with a reasonable mean F1-score of 0.757, which represents
a reliable prediction while keeping false positives and false
negatives low. C5 does not have a high F1-score as the recall
is very low. In other words, it only detects a few positives and
plenty of false negatives. A reason for this could be the strong
imbalance between malicious5 and not-malicious posts, also
visible in Figure 5. Instead, C5 has a high precision (>0.91) —
if it classifies an artifact as malicious1, it is very likely correct.
However, C1 detects as much as 99% of the posts flagged as
malicious by C5. An important difference between C1 and
C5 lies in the false negatives, where C1 performs better. In
particular, C1 correctly detects ≈82% of PM5, while C5 only
detects ≈20% of these. As a result, C5 ends up with more
false negatives. Since IoC Stalker aims to be an initial scanning



system whereby predictions undergo further investigation, we
err on the side of having false positives over false negatives,
and thus we use C1 for the remaining steps.
Balancing strategies. We compare the four balancing strate-
gies discussed in §III-D3. We see that applying any of the
four strategies improves the classification results, whereby the
four strategies differ less than 1% in their values with a mean
of ≈ 0.75, and a variance of ≈ 7.57 · 10−7. Thus, we select
classic random oversampling [48] due to its simplicity and
since it is straightforward to apply without human validation
for the misclassified items. We report the performance of the
different balancing strategies in Appendix B-C.
Time Dependencies. We pick timeframes t = [1, ..., 20] and
predict years y = [2013, ..., 2022] to determine the most
suitable timeline for each sub-dataset. Timeframe 20 repre-
sents the full historical data available. For each timeframe,
we average the F1-score of all years and present the results
in Figure 7, offering more details about the highest values in
Appendix B-D. Our results indicate, that while there is an ideal
timeframe for each type of IoC, using fewer data is beneficial
when results are comparable. We observe that seven years
(t = 7) is the optimal timeframe, while any window >1 does
not make a significant difference in the F1-score (difference
less than 0.4%). It follows that when resources or historical
data are limited, it is sufficient to focus the analysis on the
recent 2 years.

We observe different optimal parameters for each type of
IoC. This led us to investigate if the performance improves
when we exclude certain types from the training set while
keeping them in the testing set using optimal timeframes per
type (cf. Appendix B-D). We report this in §V-C.
Overhead. To put things in perspective, we look at the average
number of posts appearing per day, for which we have ground
truth to build yearly models (88,314 posts). We compare the
number of posts with those IoC Stalker flags as positive
(TP + FP). Specifically, we see an average of 24.2 daily
new posts with IoCs. By leveraging IoC Stalker, only ≈8
posts (7.8 on average) would require further investigation,
whereby a subsequent analysis would confirm that ≈6 samples
are actual malicious IoCs and 2 are false positives. As a
result, the overhead placed over subsequent analysis systems is
significantly reduced by approximately 68% (from an average
of 24.2 to 7.8). This reduction allows for more focused
and efficient investigations while maintaining a high level of
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Figure 6. Classification performance of C1 and C5, for “malicious” class in
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coverage with a loss of ≈2 posts per day (FNs). Refer to §II to
gain perspective of how this performance compares to existing
methods.

Takeaway. We conclude that there is a clear preference for a
confidence threshold when generating the training data, and we
show that applying time window sizes, as well as the balancing
strategies is beneficial to enhance the training set, however,
comparable results can be achieved with even a relatively small
time window. This finding is valuable when historical data is
limited. Similarly, balancing strategies offer minimal impacts
on the results.

V. IOC STALKER

We build IoC Stalker using the best-performing setting
derived from our evaluation (i.e., training over A1 with random
oversampling and a timeframe of size 7). Next, we validate
each of the RQs we present. To answer RQ1, we show that
our algorithm can predict, from the context, if a post contains
a malicious artifact (§V-A). To answer RQ2, we show how
our model is able to identify IoCs before OSINT (§V-B). To
answer RQ3, we demonstrate how context can be transferred
across IoC types (§V-C). Finally, we perform an analysis on
the different classifier predictions to better understand how the
model performs (§V-D).

A. Prediction from context

We evaluate the yearly development of our classification,
to analyze how it performs across years. While we use our
best-performing parameters, results offer a similar progression
to C1 in Figure 6 with slightly better performance. This
improvement is mostly attributed to the optimal timeframe
(i.e., t = 7). Figure 11 in Appendix C-A depicts the results of
the classifier trained with our final settings.

Performance. We observe a good performance, increasing
over time, except for a slight drop in 2021. The accuracy
consistently remains higher than other metrics across all years.
The F1-score stays relatively steady accross the years around
its mean of 0.76, with a drop in 2021 to a minimum of
0.68 but reaching its maximum of 0.8 in the year after. The
recall is generally higher than the precision, except for 2020
and 2022 — around the drop in the recall in 2021. This
means that for those years the model was more conservative
in predicting cases as malicious, thereby ensuring that those
it does predict as malicious are highly likely to be true
positives. The performance drop of the entire dataset in 2021
is slightly noticeable for FQDN and IPs. Instead, URLs show
a performance increase compared to the previous two years.
Looking at the FPs and FNs holistically, we have not observed
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any particular reason for the performance drop. Judging by
the significant increase in 2022, we attribute the dip to an
organic concept drift [44], [50]. Finally, we note that our model
predicts IoCs better when combined than when predicting
them individually. We attribute this benefit to the transfer of
knowledge as we discuss in §V-C.
Feature importance. We average yearly values and summa-
rize the 10 dimensions of each sentence embedding vector
for the post content, the initial post’s content, and the thread
headline to show the importance of each embedding. Table IV
shows that the content and text-based features are significantly
more important than Metadata-based features. The number of
artifacts in a post is the most important feature, followed
by the sentence embedding content of the post, the thread’s
first post, and the thread’s headline. Apart from the author’s
role, which seems to have the least impact, the metadata is
comparably important. These findings show the benefit of con-
sidering the post content (sum. of post-content embeddings,
and text-based features: 93.2%) rather than features related to
the author.

B. Prediction Ahead of OSINT

To answer RQ2, we focus on the true positives of our
classifier. First, we compare our findings directly with our
OSINT source (VirusTotal), and then with the most recent
largest CTI release in the literature [51].

1) Comparison with VirusTotal: We perform a yearly anal-
ysis over y = [2013 − 2022], comparing the time when we
detect an IoC and the time when VirusTotal is first aware of it.
Recall that VirusTotal only provides “first submission date” for
Hashes and URLs, therefore we do not conduct comparisons
for IPs and FQDN as these might not be accurate. We note,
however, that our system can be deployed to crawl and detect
posts in real-time, i.e., when IoCs are posted, and thus timely
information for these IoCs could be obtained. Our system
detects 21,159 malicious posts containing 37,317 malicious
IoCs (383 Hashes, 33,086 FQDN, 1,894 IPs and 1,954 URLs).

Table IV
THE FEATURE IMPORTANCE AVERAGE OVER ALL YEARS. THE 10

EMBEDDING VALUES HAVE BEEN SUMMARIZED.

Feature Importance
Post-content Features

∑
0.5794

1) Post sentence embeddings 0.2178
2) Thread headline sentence embeddings 0.1642
3) Thread’s 1st post sentence embeddings 0.1974

Text-based Features
∑

0.3527
4) Total nr. of characters in the post 0.0511

5) Number of artifacts in a post 0.3016
Metadata-based Features

∑
0.068

6) Author’s community reputation 0.0142
7) Author’s activity rank 0.0123

8) Author’s role 0.0047
9) Author’s number of total posts 0.0184

10) Days between author registration and post creation 0.0184
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Figure 9. Ablation study over different types of IoCs. Showing the mean
F1-score across all timeframes for each dataset.

As artifacts can be mentioned multiple times across posts, we
remove duplicates and remain with 87 Md5, 54 SHA1, 175
SHA256, 6,135 FQDN, 1,013 IPs, and 1,161 URLs.

Figure 8 shows the time difference between Hashes and
URLs detected by our system, compared to VirusTotal, where
the time difference is at a day later. We see how our system
detects some IoCs up to 3.7 and 8.4 years before VirusTotal
for Hashes and URLs respectively. On average, we see how
we detect 34 unique malicious Hashes 107 days in advance,
and 281 unique URLs 536 days in advance. In summary, we
detect IoCs ≈ 490 days before VirusTotal.

2) Comparison with CTI-Lense dataset [51]: We compare
our approach with a recent dataset released by Jin et al. [51].
It provides data from seven publicly available OSINT sources
(AlienVault OTX, Hail a TAXII, IBM X-Force Exchange,
Cyware, PickupSTIX, Unit42, and Limo from Anomali) and
three repositories (JamesBrine, DigitalSide, and Mitre Attack)
containing a total of 6,363,065 objects within the time pe-
riod of October 31, 2014, to April 10, 2023, which largely
coincides with the time-span of our analysis. We extract the
IoCs from their dataset and compare them with ours. Table V
shows the overlap. We see 402 IoCs posted in the forum
before they were included in the OSINT feeds of CTI-Lense.
Also, our method discovers 8,123 IoCs that are not reported
in this dataset, with a significant subset of Hashes and URLs
(≈ 21.3%) posted in the forum before they were known to
VirusTotal.

C. Knowledge Transfer across IoC Types

We test how the classifier performance changes in the
absence of certain types of IoCs in the training set. This
analysis is motivated by the poor performance offered by
some types of IoCs (§IV-C2) and to validate RQ3. For this
analysis, we use the Everything dataset slice as a base-
line, as well as learning strategies <IoC_name>_only and
<IoC_name>_excluded as defined in §III-D4.

Figure 9 shows the performance in each strategy. Interest-
ingly, we see that our learning pipeline transfers informative
features across different types, enabling transfer learning over
IoCs that initially were hard to predict. For instance, learning

Table V
COMPARISON BETWEEN OUR FINDINGS, THE DATASET PROVIDED BY [51]

AND VIRUSTOTAL (VT). NUMBERS WITHOUT DUPLICATES. (*) MEAN
NUMBER OF DAYS BEFORE OSINT.

Type Hashes URLs IPs FQDN Total
IoCs detected before [51] 15 (631*) 14 (1.7k*) 138 (2K*) 235 (1.4k*) 402
IoCs not contained in [51] 291 1143 852 5,837 8,123

Not in [51] & detected before VT 32 274 - - -



in the absence of IPs in the training set yields performances
as good as when considering every IoC type in the training set
(0.75 F1). IPs are very volatile and the quality of their ground
truth is detrimental. Furthermore, training with URL_only
(0.62 F1) or fqdn_only (0.56 F1) is still beneficial to predict
other types even in the absence of their ground truth. These
findings offer valuable insights to devise cost-effective labeling
strategies, as practitioners can completely exclude certain
types from the pool of samples to label, like Hashes, that
require complex and expensive static and dynamic analysis
methods to determine if a sample is malicious.

D. Investigating Classifier Predictions

We investigate the reasons behind existing misclassifica-
tions. First, we check whether shorter posts provide less
explanation, and would therefore be harder to classify. Then,
to further understand the classification behavior, we perform
a qualitative analysis of C1 and C5 predictions. We select a
random sample of 200 posts per classifier (i.e., 50 TPs, 50
FPs, 50 TNs, and 50 FNs) and report our observations.

1) Evaluating Context: For each IoC-type and all IoC-
types together (i.e., Everything) we calculate the min.,
max., avg., and median post-length for all classification groups
TPs, FPs, TNs, and FNs. We consider the length that remains
after preprocessing the post (c.f. §III-C1), and remove the
artifacts that were masked to investigate only the textual
content of the post. Overall, we find no strong evidence
that misclassification is related to a shorter post length as
we detail next. We start by analyzing the average length in
Table VI for IPs and Everything. 2 Zero-length posts
account for ≈2% of our dataset. We see that a median post
length of 169 is enough to provide context to detect artifacts
for Everything. Interestingly, we observe longer lengths in
IPs when compared to Everything. As noted in Figure 9,
including IPs resulted in the worst performance for knowledge
transfer, while excluding them led to the best outcomes. We
also observe that TPs are in general larger than FPs, suggesting
that the detection of malicious posts could benefit from a
longer context. However, this is not the case for benign posts,
where TNs and FNs are shorter than FNs. Due to these
nuances, we also perform a cursory manual inspection. We
observe that the top longest posts of IPs have concise, yet
valid contextualized explanations that come together with a
dump of technical strings with no semantic value. Based on all
this, we conclude that the length of a post does not generally
justify existing misclassifications, and we identify that further
insights into the reasons explaining existing misclassifications
require dedicated qualitative analysis, as we perform next.

2) Evaluating C1: We look into the 200 samples to study
how the context and content influence the performance of the
model. When the context is descriptive and aligns with the
artifact’s status, the model performs well. If little context is
available, distinctive keywords can help the classifier to make

2Note that our post-processed dataset includes zero-length posts, which can
be either correctly or wrongly classified based on the contents of the first post
and headline of the thread, as we show in the Appendix C-B5.

the right decision. In the absence of any content, the model can
still make correct decisions, based on other features like first-
post content or thread title. For example, we found a thread
asking for proxies to send spam on social networks. Someone
replied with a link to a malicious proxy shop, without any
other content, yet IoC Stalker properly detected it as malicious.
Confusing, ambiguous, or incomplete content poses challenges
for the classifier, as well as when the described intention
does not align with the artifact’s status, i.e., an IoC discussed
benignly (see Appendix C-B5). This reflects the complexity
of subtle threat indicators. This confusion mirrors potential
human error and highlights areas where human oversight could
fail similarly, suggesting that certain classification tasks are
inherently complex and not solely a machine limitation. Ap-
pendix C-B offers a deeper analysis of representative threads.

3) Evaluating C5: Similar findings from C1 are observed
for C5. However, TPs explicitly talk about malicious ac-
tivity in the presence of hacking-related keywords, detailed
explanations and tutorials, explicit questions, and malware
advertisements. We also observe similar discussions in the
set of FPs, except the IoCs were not flagged as malicious
by existing OSINT at the time of writing. In FNs, we find
less explicit malicious discussions, with fewer unambiguous
hacking-related keywords, but we observe a significant amount
of content where the malicious intent is subtle to a human
reader. This is most likely as C5 was trained with a more
reliable threshold τ (i.e., using PM5) therefore misclassified
gray behavior (i.e., 95% of PM1).

VI. CASE STUDY

We investigate how our system performs in the early warn-
ing of IoCs through a case study. Table VII lists malicious
products and services that would have been discovered by our
method before VirusTotal, and compares them with the CTI-
Lense dataset [51]. We select cases based on how early they
were detected, and we next discuss three of them.

Spectre RAT. We find a post where a person shares a “Spectre
RAT” project, a new Botnet that allegedly allows features such
as accessing browser data or stealing bank information. The
IoC is the URL of an online file-sharing platform. The file was
created on 2022-03-31 (now expired), and was posted in the
forum shortly after (on 2022-04-06). The first submission of
the URL to VirusTotal was on 2022-07-15 (3.5 months after),
and it is flagged as malicious. We note that the serving IP
address is also classified as malicious. This example shows
the potential of our system in early detecting malicious IoCs
(Req. 2) — the submission to VirusTotal is more than 3 months
after the discussion in a post where the actor shared the new
malware.

Table VI
INVESTIGATING DISCUSSION CONTEXT LENGTH

Everything IPs
TPs TNs FPs FNs TPs TNs FPs FNs

min 0 0 0 0 1 0 0 0
max 218,470 76,856 47,731 41,469 43,497 83,108 47,731 35,331
mean 1,071 361 600 400 2,948 1,395 1,588 2,013

median 301 169 291 183 803 551 676 637



Table VII
IOCS DETECTED BEFORE VIRUSTOTAL. ONLY THE IP IS INCLUDED

IN [51] OVER 3.5 YEARS LATER (CF. §V-B2).

Name Type Undetected for Description
Spectre RAT URL ≈3 months URL to download malware
Mars Stealer V8 URL >2 weeks URL to download malware
8x.14x.5x.18x IP - IP related to phishing.
Predator Pain v12 Hash >4.5 months Stealer (keylogger)
Allow.exe Hash 2 weeks Malicious code injection
Install Exchange Domain ≈1.5 months Shop dedicated to PPI
Backdoor.exe Hash 9 days Unauthorized remote access

Install exchange. This case shows the advert of an install
exchange shop, a criminal service (Pay Per Install, or PPI),
popular in the underground economy [52]. We find FQDN and
IP IoCs posted on 2022-04-23. The “first submission date” of
the domain to VirusTotal is on 2022-06-02 (almost 1.5 months
later). Although the domain is now unregistered, the serving
IP is still flagged as malicious by VirusTotal at the time of
writing, since it belongs to a hosting provider which is being
abused for malicious activities.
Mars Stealer V8. We see a download URL in a post where
an actor is offering a cracked version of “Mars Stealer V8”,
an information-stealing Trojan. The URL was posted in the
forum on 2022-05-01. The first submission to VirusTotal was
on 2022-05-16 and detected as “personal network storage” and
“filesharing.” The malware operated undetected for 15 days
since the time of posting.

VII. DISCUSSION

Our work is designed to complement existing IoC detection
solutions to improve CTI. We next discuss our limitations and
then highlight our main takeaways.
Limitations. We rely on prior work to extract artifacts from
text [13], and hence we inherit their limitations. Extracting
IoCs from text is a long-established area of research [15] and
we rely on an extensively-evaluated state-of-the-art tool [13].

Second, due to their dynamics, the OSINT label for some
artifacts (e.g., IPs or URLs) might change over time [2], [43].
The historical information of our data should be contextualized
with the corresponding historical ground truth from OSINT.
VirusTotal, however, does not provide such historical info for
IPs and FQDN (c.f., §IV-B1). This limitation might bias our
classification (e.g., an IP that was malicious 5 years ago and
nowadays is classified as benign), but it would not impact
our system when deployed in real-time with continuous data
collection.

Third, we observe a gap between when an IoC is published
and when it is scanned by OSINT (c.f., §V-B). Since our
system relies on OSINT to build ground truth, we might
exclude recently discussed IoCs or miss those that are not
on the radar of the OSINT community. In an ideal setting, our
system would not necessarily have to fully rely on OSINT.
Instead, our system could benefit from a deployment where
a dedicated team of analysts was analyzing IoCs posted in
the forums to build ground truth tailored to our domain.
Unfortunately, we lack these resources but we argue that the
use of OSINT is enough for our purpose, and our evaluation

shows that learning from context can effectively help in getting
ahead of the arms race against miscreants.

Fourth, the application of ML in the context of cybersecurity
requires robust tools [17]. We consider an adversary who is not
aware of our monitoring system, and thus might not attempt
to attack the classifier (e.g., injecting or removing specific
content to evade detection, or modifying the semantics to
tamper with sentence embeddings). While this limits our ML
pipeline in an adversarial setting, we believe that an adversary
that takes due care to bypass such detection would also take
care of not publishing IoCs that can be directly queried on
VirusTotal or any other OSINT intelligence. Also, altering
sentences in an adversarial fashion may not only confuse our
method but human readers as well. This might not be desired if
the author wants to reach as many users as possible, e.g.: when
selling a product. Furthermore, large amounts of confusing
and misleading content would decrease the quality of the
forum content, and users may shift to other platforms. On the
technical side, building sentence embeddings robust against
adversarial attacks is currently an active area of research [53],
studying its use in underground forums and how it may affect
IoC Stalker is part of our future work. Despite this limitation, a
system such as ours can also help in hindering communication
and deterring the effective sharing of artifacts in underground
forums in the presence of adversaries aware of our system.
Furthermore, we note that forum administrators might act if
they believe there are malicious actions in users’ posts.

Finally, we limit our analysis to a single forum due to
restrictions on VirusTotal’s API. Our approach would not
suffer this limitation should we have the budget for a private
API, as CTI companies have. Despite this, we show how our
method detects IoCs related to severe criminal activities like
Trojans, keyloggers, or phishing-related IPs, 490 days before
OSINT. We conclude that one single forum suffices to answer
our RQs, generalizing across the data we observe. Also, we
work with features that have been used in research on similar
underground hacking communities [9], [54]. Furthermore, one
important finding is that features derived from the discussions
are more significant than author-related features (cf. §V-A).
Thus, we posit that our method could work on other platforms
hosting similar discussions.

Overall, our system can be viewed as a complementary tool
for CTI, with early-warning capabilities. As such, and despite
the benefits, our tool inherits limitations from the CTI realm
as discussed above.

Takeaways This is the first work that fulfills all three require-
ments (§II) for IoC detection in underground forums:
Req. 1 (threat-less zero-shot learning). As demonstrated in
§V-A, we are able to predict malicious artificats just from
the context they appear in. In fact, we show in Table IV the
importance textual features have in the detection, concluding
that they can be strong indicator for the appearance of IoCs.
We thus fill a gap from previous work, which either relies on
characteristics from the artifact (e.g., URL patterns) [21], [22],
[24], or do not use advanced NLP models such as sentence



transformers [1], [19], [20], [25]–[27].
Req. 2 (early detection). We can detect IoCs months/years
before they appear in OSINT as shown in §V-B. Recall that our
training process relies on time-invariant features. Thus, IoC
Stalker helps in detecting malicious IoCs in the early stages
of modern cyberattacks, i.e., when tools or services used in
the attacks are traded in cybercriminal communities [6], [9],
[16]. Our case study further supports this, showing examples
of IoCs representing malware that could have been detected
weeks or months in advance with our method.
Req. 3 (generalizable approach). We show in §III-D our
system can improve the detection of IOC-types that are hard
to predict, by relying on the combination of other IoCs. This
means that the system is robust and it is able to learn from the
noisy context of some IoCs. Furthermore, we show in §V-C
that different types of IoCs can be predicted while not being
part of the training set. This property allows to easily extend
a system like ours to include other sources of CTI [1], [55].
Indeed, even in the absence of artifacts in discussion, e.g.,
when the actual trading or sharing of the IoCs could happen
through DMs or alternative channels, our system would still
be able to detect posts that advertise malicious products or
services. We see value in flagging those services since this
would assist CTI analysts to dig further.

Finally, we expect our method to offer an increased perfor-
mance in a real-world monitoring environment, which could
easily be integrated with existing OSINT feeds.

VIII. RELATED WORK

Detecting malicious artifacts is a key aspect of CTI that
has been prevalent in the cybersecurity literature [18]. This
information is often given in OSINT repositories. Existing
work studied and compared various public and commercial
threat intelligence data sources [2], [3], showing that the
ecosystem needs reliable and robust mechanisms to update
these feeds. For such a purpose, in §II we listed related work
that use the context and content, as well as features from the
artifacts directly, to detect whether a given artifact is malicious
or not [1], [19]–[29].

We review further literature that relies on features from
the artifacts directly (mostly, for malicious URL detection).
These provide the tools for IoCs investigation from online
social media, to detect activities such as spamming [56]–
[58], phishing [59], or other malicious activities [60]–[63].
Also, artifacts have been investigated to gain information
about the context in which they appear, e.g., to profile users
and potentially malicious behavior through evaluating the
posted links [9], [64]. Finally, we see research focusing on
the automatic extraction of IoCs from content obtained from
unstructured, security-related text [13], [15].

Looking at the extraction of CTI beyond IoCs from hacking-
related sources [6], [65]–[67], we see prior work extracting
CTI from tutorials, source code, or attachments. Paladini
et al. perform a measurement correlating threat reports and
hacker forums [8]. Unlike our work, their approach does not
predict actionable CTI in the form of IoCs. However, their

results highlight the value of hacker forums as early threat
indicators and the importance of proactively monitoring them
for potential cyberattack detection, which motivates our work.
Samtani et al. [68] extract and analyze them using a set of
seeding keywords and snowball sampling to identify posts
of interest. Other work classifies posts of interest through
a set of keywords and bag-of-words [69]. While we have
not considered these types of CTI artifacts, we note that
our method would potentially identify such posts of interest,
provided that we can gather ground truth for a subset of these.
As shown in §II, closely-relevant related work fails to meet
the requirements we set to address in this paper.

IX. CONCLUSION

In this paper, we propose a method to detect posts contain-
ing IoCs in underground hacking forums. This approach allows
to identify IoCs at the initial stages of modern cyberattacks,
when the tools or services are being shared, advertised or
traded by cybercriminals. We conducted our study on a promi-
nent English-Russian underground forum and considered four
different types of IoCs: Hashes (MD5, SHA1, and SHA256),
IPs, URLs, and FQDN.

For the first time, we design a method able to fulfill three
key requirements for IoC detection in underground forums.
First, we detect posts containing IoCs with a reasonably
high F1-score of ≈0.8 through threat-less zero-short learn-
ing, meaning to train our classifier we only considered the
context of the post. We find that Post-content and Text-based
features are significantly more important than the metadata-
based features from the author. Second, our method allows
discovery of IoCs that stayed unknown to OSINT for an
average of ≈ 490 days. In our case study, we showcased
IoCs that our approach detected prior to their appearance in
OSINT. Our detailed analysis of recent IoCs confirmed that
they often surface in forum discussions shortly after their
creation. Finally, since certain types of IoCs are harder to
predict individually than others, we provided a method that
benefits from the combination with other IoCs through transfer
learning. Furthermore, we demonstrated how our classifier
could predict different types of IoCs although those were not
part of the training set. This means the approach can be easily
extended to other types of IoCs beyond this analysis.
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APPENDIX A
ETHICS

The data we collect is available through a gatekeeper. We
have not informed the gatekeeper of our collection process
as this action would result in our account being banned and
this study would not be possible. This has important Ethical
implications, which we discuss next. First, there is a risk to
the privacy of the users of the forum. We make no attempt
at deanonymization in cases where the users use pseudonyms,
and we do not focus on the real-life identities of the people
involved in cases where the users use their legal names.
Second, there is a risk of disrupting the normal operation of
the site if our crawler is very aggressive. Our methodology
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ensures that our crawling will not disrupt the normal operation
of the site through a human-like crawl. Third, there is a risk
that our study would attract the interest of someone falling into
the pathways to cybercrime. We make sure to omit references
to any unknown IoC studied in this work, and we do not
publicly share the name of the forum. We have discussed these
risks with the Institutional Review Board (IRB) of a former
institution of a co-author where the data collection started.
We obtained ethics approval to collect data and perform our
analysis with application number LRS-19/20-17377.

APPENDIX B
EXTENDED EVALUATION

A. Characterizing IoCs

In §IV-B1 we study the annual distribution of artifacts. Our
dataset predominantly yields domains, IPs, and URLs, with
a substantial presence of hash values as well. When looking
into the artifacts’ distribution over the years, Figure 10 shows
that while there has been an initial increase of mentioned
IoCs in 2005-2009 due to the forums’ creation phase, we see
an even appearance of malicious1 IoCs over the years with
slight increases and decreases. We observe the same for not-
malicious, and not-scanned artifacts, and additionally see a
slight jump in 2013, where these two types tripled compared
to the previous year. For malicious5 IoCs we observe similar
developments, only in 2008 there is a higher increase of
malicious5 compared to the other types in the same period.

B. Algorithm Selection

In §IV-C1, we evaluate the best classifier for our pre-
diction including Random Forest (RF), Logistic Regression
(LR), Gradient Boosting (GB), MLPClassifier (MC), Gaus-
sianNB (GNB), and LinearSVC (SVC) on PM1 to identify
the most effective method for detecting suspicious Indica-
tors of Compromise (IoCs). The analysis considers time de-
pendencies (cf. §III-D2) and is conducted over five years
y = [2022, 2021, 2020, 2019, 2018]. Table VIII summarizes
the results, showing the mean F1-score over the 5 years.

When predicting posts containing malicious1 IoCs, RF
performs the best overall, achieving an F1-score of 0.739,
whereas GB was most effective for URLs with an F1-score
of 0.595.

We note that some artifact types, like Hashes, are easier
to predict individually (F1-score of 0.791 with RF), while
predicting IPs and Domains is more challenging, with sig-
nificantly lower F1-scores of 0.428 and 0.382, respectively.
This may stem from the volatile nature of domains and IPs
compared to the more stable nature of URLs and Hashes.

C. Balancing Dataset

In Table IX we show the results of the different balancing
strategies we evaluated in §IV-C2. We show that any of them
improves the classification outcome with minimal variance
among them (less than 1% difference with a mean of ≈ 0.75,
and a variance of ≈ 7.57 · 10−7). Due to its simplicity of

Table VIII
MEAN F1-SCORES OF THE TESTED CLASSIFIERS.

Mean of years 2018-2022
Classifier Everything IP FQDN Hashes URL

GNB 0.228 0.378 0.197 0.643 0.371
MC 0.629 0.124 0.251 0.535 0.485
SVC 0.344 0.048 0.166 0.694 0.476
GB 0.722 0.180 0.303 0.750 0.595
LR 0.636 0.428 0.382 0.579 0.571
RF 0.739 0.160 0.356 0.791 0.592

Table IX
COMPARISON OF DIFFERENT BALANCING STRATEGIES.

Method Value
Dataset without balancing 0.7513
1) Random Oversampling 0.7551
2) Re-adding Malicious 0.7568
3) Re-adding All 0.7546
4) Oversampling & Re-adding Malicious 0.7548

application without the need for human validation of the
misclassified items, we pick classic random oversampling as
the preferred method.

D. Time dependencies

The highest values for each with the corresponding time-
frame size t are reported in Table X. We see that seven years
(t = 7) is the optimal timeframe for the entire dataset. When
resources are limited, it is sufficient to focus the analysis on
the recent 2 years. For Hashes, (t = 6) years of historical data
bring the best results, while when considering the most recent
2 years and therefore 1/3 of the data the performance loss will
be ≈ 2.5%, or when using the most recent 3 years (1/2 of the
data) the loss will be ≈ 1.7%. The entire historic data (t = 20)
is the ideal training data size for URLs and FQDN, while the
performance loss when focusing on the 2 most recent years is
≈ 2.6% for URLs, and ≈ 1% for FQDN. The ideal timeframe
when checking IPs is (t = 3) years. The performance loss
of ≈ 1.6% for t = 2 and ≈ 4.1% for t = 1 indicates that
using just slightly fewer data results in a relatively large loss
in performance.

Table X
MEAN VALUE (v) OF ACCURACY (A), PRECISION (P), RECALL(R), AND

F1-SCORE (F1) ACROSS THE YEARS. DISPLAYING THE MAXIMUM VALUE
(v) AND THE CORRESPONDING TIMEFRAME (T).

everything ip fqdn Hashes url
t v t v t v t v t v

a 4 0.85 6 0.80 2 0.83 6 0.70 7 0.80
p 4 0.75 6 0.49 2 0.68 20 0.75 7 0.76
r 20 0.77 3 0.27 20 0.35 6 0.87 20 0.51

f1 7 0.76 3 0.33 20 0.45 6 0.79 20 0.60

APPENDIX C
IOC DETECTION

A. Prediction from context

Figure 11 shows the performance of our prediction in §V-A.
The overall good performance of the dataset is improving
over time, with a noticeable decrease only in 2021. The
Accuracy is higher than other metrics each year. The F1-
score fluctuates around a mean of 0.76, with a dip to 0.68
in 2021 but recovering to 0.8 the following year. Apart
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Figure 10. Evolution of total IoCs posted per year.

from the years 2020 and 2022, the recall is higher than the
precision, indicating the model was more conservative when
making predictions. Despite examining false positives (FPs)
and false negatives (FNs), no specific cause for the 2021 dip
was identified; however, the recovery in 2022 suggests the
influence of organic concept drift [44], [50].
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Figure 11. Classification performance scores (y-axis) across the years (x-
axis) for malicious as positive class, with PM1 as training set, using random
oversampling and a timeframe of size 7.

B. In-depth analysis of Example Threads from C1 Predictions

We provide illustrative examples of some of the cases that
have led to the findings described in §V-D2.

1) Example 1 - Windows privilege escalation: We inves-
tigate posts of a thread about Windows Privilege Escalation.
When good context is provided, the model correctly detects
malicious posts and realizes that the absence of any context
means not-malicious. The model got confused when the post
content was describing malicious intention, but the artifacts
were benign. Further misclassification occurred when a post
only contained a vulnerability name but no further explanation.
The context of the thread headline, and the first post talking
about malicious interaction, led the model to decide on ma-
licious activity, although the artifacts were benign. A human
investigator would have made the same mistakes. There were
no FNs in this thread. Despite the FP posts being wrongly
classified, there were replies in the context of a thread where
the headline and first post are related to actual malicious
behavior, which provides valuable insights for detecting and
pinpointing malicious activity.
True Positives. Most posts in the thread are TPs. The first
post gives instructions and shares tools to conduct privilege
escalation in Windows (a tutorial). The post contains URLs
flagged as malicious from which the tools can be downloaded.
A human reader would have flagged this post as malicious as
well. We find that some replies contribute to the tutorial by
sharing other malicious URLs. For example, one post writes

“Windows readfile 0day” containing a file-sharing URL. The
URL itself was not known to VirusTotal at the time of our scan,
but the domain was. Although the text description is short, the
post is properly marked as malicious by IoC Stalker. Due to
the keyword “0day”, a human analyst would have decided to
classify the post as malicious.
False Positives. Some posts were falsely classified as mali-
cious. One post shares a link to a privilege-escalation cheat
sheet. While the post content and the intent are malicious,
the artifact itself is not. Another post in this thread contains
the name of a vulnerability in Microsoft Defender , and
two links with further information about the vulnerability
(Github and Microsoft). Missing explanation in the post leads
to wrong classification. The post could have been flagged
correctly as not-malicious by investigating the benign domains.
Furthermore, one post was misclassified because it shares a
project link with a brief description about increasing privileges
through the Windows Kernel Cryptography Driver and the
vulnerability name. A human investigator would have also
further investigated the artifact.
True Negatives. One post containing only an image link,
with no text was correctly classified as not-malicious. Despite
the thread’s headline and first post, the model correctly real-
ized that the absence of information means the IoC is not-
malicious.

2) Example 2 - Thread containing dark keywords:
In this thread, a person is advertising a newly developed
RAT (Remote Access Trojan). Although posts included dark
keywords, the classifier correctly classified TPs, because they
contained sufficient explanation and context. A FP post con-
sisted of short incomplete sentences, containing keywords and
forum slang which led to translation errors. This made it very
difficult to understand and classify for both a machine and a
human. There were neither TNs nor FNs in this thread.
True Positives. The initial post advertises the new RAT
and its features, then finally shares the link to download
the malware. The post does not contain the word “trojan”
yet provides sufficient context to understand the malicious
intention. A follow-up post containing an updated version
and the download link is also correctly classified. A human
investigator would have decided the same.
False Positives. One post is falsely classified as malicious.
The author is answering the previous discussion, expressing
gratitude for the program. The remaining content is challeng-
ing to understand as it is a brief description containing dark



keywords and translation errors. A human investigator would
have difficulties understanding it. This probably led to a wrong
decision for the classifier as well.

3) Example 3 - Which RAT to use: We investigate a
thread whose creator asks for advice on which RAT to use.
There is no artifact contained in the initial post. The classifier
was correctly able to distinguish the types of answers looking
for advice that does not include IoCs (TN), and offering
malware that contains IoCs (TP). It had, however, difficulties
identifying the IoC among the benign-looking expressions of
opinion about RATs. There were no FPs in this thread.

True Positives. One person is sharing information by provid-
ing the RAT’s name together with a filesharing URL. Although
the post provides little context, the model correctly classified
the post as malicious. A human would have decided the same.

True Negatives. In a brief reply, someone expressed the need
for two specific types of RATs. The model correctly classified
the contained artifacts as not-malicious, a human would have
done the same.

False Negatives. In another reply, a person shares their
opinion on a RAT, whereby the malicious URL is the RAT’s
official website. The context does not express malicious intent
explicitly, as it discusses the latest news regarding the RAT.
However, a human would have understood from the context
that the shared link probably contains malicious content.

4) Example 4 - Initial post with short context: We
investigate two cases where the initial posts in their respective
threads lead to confusion due to missing context.

False Negative. A thread was opened with the intention of
“Selling a crypto database” (as mentioned in the title). While
the first post contained a malicious domain, it was written with
so little information that the model was not able to detect it
as malicious.

False Positive. In a first post, a user is referencing a TV
show (“Who is watching Mr. Robot?”), posing a question
about the method used to search for a Trojan in one of the
episodes (including some technical details of its functioning).
The artifact is the link to a streaming service to watch the
series, but it was wrongly classified as malicious due to the
context.

5) Example 5 - Posts missing context: Recall from Sec-
tion V-D2 that zero-length posts can be correctly classified.
Here, we give two examples of replies that post artifacts with-
out context and how this influences the classifier’s decision in
the existence of the headline and first post.

False Negative. In a thread, a person is discussing how to
boost likes on social media, which is a common malicious
activity traded in hacking forums [70]. However, it did not
provide details on how these were obtained, thus lacking, at
the eyes of the classifier, a malicious purpose. As such, one
of the replies is misclassified as FN, since it only contains a
malicious link with no context.

False Positive. A thread starts with a post that describes
vulnerabilities for a web content management system. In the

same thread, one reply shares a benign link to an OSINT
repository, without further description. Thus, this artifact has
been misclassified due to the contents of the first post and
thread headline.
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